人类运动合成是机器人技术的图形,游戏和仿真环境中应用的重要问题。现有方法需要准确的运动捕获数据进行培训,这是昂贵的。取而代之的是,我们为直接从单眼RGB视频中训练物理上合理的人类运动的生成模型提出了一个框架,该模型更广泛地可用。我们方法的核心是一种新颖的优化公式,该公式通过以可区分的方式执行物理限制和有关接触的原因来纠正不完美的基于图像的姿势估计。该优化得出校正后的3D姿势和运动及其相应的接触力。结果表明,我们的物理校正运动在姿势估计上显着优于先前的工作。然后,我们可以使用它们来训练生成模型来综合未来的运动。与先前的基于运动学和物理学的方法相比,我们在人类36m数据集中〜\ cite {H36M_P​​AMI}实现了定性和定量改进的运动估计,合成质量和物理合理性。通过从视频中学习运动合成,我们的方法为大规模,现实和多样化的运动合成铺平了道路。项目页面:\ url {https://nv-tlabs.github.io/publication/iccv_2021_physics/}
translated by 谷歌翻译
我们提出了体面意识的人类姿势估计,我们根据模拟代理的本体感受和场景意识以及外部第三人称观察来估计3D构成。与经常诉诸多阶段优化的先前方法不同,非因果推理和复杂的接触建模以估计人类姿势和人类场景的相互作用,我们的方法是一个阶段,因果关系,并在模拟环境中恢复全局3D人类姿势。由于2D第三人称观察与相机姿势结合在一起,我们建议解开相机姿势,并使用在全球坐标框架中定义的多步投影梯度作为我们体现的代理的运动提示。利用物理模拟和预先的场景(例如3D网格),我们在日常环境(库,办公室,卧室等)中模拟代理,并为我们的代理配备环境传感器,以智能导航和与场景的几何形状进行智能导航和互动。我们的方法还仅依靠2D关键点,并且可以在来自流行人类运动数据库的合成数据集上进行培训。为了评估,我们使用流行的H36M和Prox数据集,并首次在具有挑战性的Prox数据集中获得96.7%的成功率,而无需使用Prox运动序列进行培训。
translated by 谷歌翻译
我们提出了一种对象感知的3D自我监测姿势估计方法,其紧密地集成了运动学建模,动力学建模和场景对象信息。与使用两种组件的现有运动学或基于动态的方法不同,我们通过动态调节培训协同两种方法。在每个时间步骤中,用于使用视频证据和仿真状态提供目标姿势的运动模型。然后,预先注释的动力学模型试图模拟物理模拟器中的运动姿势。通过比较由动态模型对动态模型产生的姿势指示的姿势,我们可以使用它们的未对准来进一步改善运动模型。通过在场景中的6DOF姿势(例如,椅子,盒子)中,我们首次展示了使用单个可佩戴相机估计物理合理的3D人体相互作用的能力。我们在受控实验室设置和现实世界场景中评估我们的Egentric姿势估计方法。
translated by 谷歌翻译
在本文中,我们介绍一种方法来自动重建与来自单个RGB视频相互作用的人的3D运动。我们的方法估计人的3D与物体姿势,接触位置和施加在人体上的接触力的姿势。这项工作的主要贡献是三倍。首先,我们介绍一种通过建模触点和相互作用的动态来联合估计人与人的运动和致动力的方法。这是一个大规模的轨迹优化问题。其次,我们开发一种方法来从输入视频自动识别,从输入视频中识别人和物体或地面之间的2D位置和时序,从而显着简化了优化的复杂性。第三,我们在最近的视频+ Mocap数据集上验证了捕获典型的Parkour行动的方法,并在互联网视频的新数据集上展示其表现,显示人们在不受约束的环境中操纵各种工具。
translated by 谷歌翻译
从单眼视频中进行的3D人姿势估计最近看到了显着改善。但是,大多数最先进的方法都是基于运动学的,它容易出现具有明显伪影的物理上不可信的运动。当前基于动态的方法可以预测物理上合理的运动,但仅限于具有静态相机视图的简单场景。在这项工作中,我们介绍了D&D(从动态相机中学习人类动力学),该法律利用物理定律使用移动的摄像机从野外视频中重建3D人类运动。 D&D引入了惯性力控制(IFC),以考虑动态摄像机的惯性力来解释非惯性局部框架中的3D人运动。为了学习有限注释的接地接触,我们开发了概率接触扭矩(PCT),该概率是通过与接触概率的可区分抽样计算的,并用于生成运动。接触状态可以通过鼓励模型产生正确的动作来弱监督。此外,我们提出了一个细心的PD控制器,该控制器使用时间信息来调整目标姿势状态,以获得平稳而准确的姿势控制。我们的方法完全是基于神经的,并且在物理引擎中没有离线优化或模拟的情况下运行。大规模3D人体运动基准的实验证明了D&D的有效性,在该基于最新的运动学基于动力学和基于动力学的方法的情况下,我们表现出卓越的性能。代码可从https://github.com/jeffsjtu/dnd获得
translated by 谷歌翻译
人体运动的实时跟踪对于AR/VR中的互动和沉浸式体验至关重要。但是,有关人体的传感器数据非常有限,可以从独立的可穿戴设备(例如HMD(头部安装设备)或AR眼镜)获得。在这项工作中,我们提出了一个强化学习框架,该框架从HMD和两个控制器中获取稀疏信号,并模拟合理且身体上有效的全身运动。在训练过程中,使用高质量的全身运动作为密集的监督,一个简单的策略网络可以学会为角色,步行和慢跑的角色输出适当的扭矩,同时紧随输入信号。我们的结果表明,即使输入仅是HMD的6D变换,也没有对下半身进行任何观察到的地面真理的惊人相似的腿部运动。我们还表明,单一政策可以对各种运动风格,不同的身体尺寸和新颖的环境都有坚固的态度。
translated by 谷歌翻译
本文认为共同解决估计3D人体的高度相关任务,并从RGB图像序列预测未来的3D运动。基于Lie代数姿势表示,提出了一种新的自投影机制,自然保留了人类运动运动学。通过基于编码器 - 解码器拓扑的序列到序列的多任务架构进一步促进了这一点,这使我们能够利用两个任务共享的公共场所。最后,提出了一个全球细化模块来提高框架的性能。我们的方法称为PoMomemet的效力是通过消融测试和人文3.6M和Humaneva-I基准的实证评估,从而获得与最先进的竞争性能。
translated by 谷歌翻译
无标记的单眼3D人类运动捕获(MOCAP)与场景相互作用是一个充满挑战的研究主题,与扩展现实,机器人技术和虚拟头像生成有关。由于单眼环境的固有深度歧义,使用现有方法捕获的3D运动通常包含严重的人工制品,例如不正确的身体场景互穿,抖动和身体漂浮。为了解决这些问题,我们提出了HULC,这是一种新的3D人类MOCAP方法,它知道场景几何形状。 HULC估计3D姿势和密集的身体环境表面接触,以改善3D定位以及受试者的绝对尺度。此外,我们基于新的姿势歧管采样,引入了3D姿势轨迹优化,该采样解决了错误的身体环境互穿。尽管所提出的方法与现有场景感知的单眼MOCAP算法相比需要较少的结构化输入,但它会产生更加可行的姿势:HULC显着且一致地在各种实验和不同指标上都优于现有方法。项目页面:https://vcai.mpi-inf.mpg.de/projects/hulc/。
translated by 谷歌翻译
Figure 1: Given challenging in-the-wild videos, a recent state-of-the-art video-pose-estimation approach [31] (top), fails to produce accurate 3D body poses. To address this, we exploit a large-scale motion-capture dataset to train a motion discriminator using an adversarial approach. Our model (VIBE) (bottom) is able to produce realistic and accurate pose and shape, outperforming previous work on standard benchmarks.
translated by 谷歌翻译
我们提出了一种从动态摄像机记录的单像素视频中恢复的3D全局人体网格恢复方法。即使在镜头的视野之外,我们的方法也适于严重和长期闭塞,并使人体追踪人体。为实现这一目标,我们首先提出了一种深入的生成运动infiller,该infill是基于可见运动的自向填充遮挡人体的身体运动。另外,与事先工作相比,我们的方法即使用动态摄像机也将在一致的全局坐标中重建人体网格。由于人类动作和相机姿势的联合重建是受到的,我们提出了一种全球轨迹预测因素,以基于当地机身运动产生全球人类轨迹。使用预测的轨迹作为锚点,我们介绍了一种全局优化框架,它可以改进预测的轨迹,并优化相机姿势以匹配诸如2D关键点之类的视频证据。具有动态摄像机的挑战性挑战和野外数据集的实验表明,在运动缺陷和全局网格恢复方面,所提出的方法显着优于现有方法。
translated by 谷歌翻译
From an image of a person in action, we can easily guess the 3D motion of the person in the immediate past and future. This is because we have a mental model of 3D human dynamics that we have acquired from observing visual sequences of humans in motion. We present a framework that can similarly learn a representation of 3D dynamics of humans from video via a simple but effective temporal encoding of image features. At test time, from video, the learned temporal representation give rise to smooth 3D mesh predictions. From a single image, our model can recover the current 3D mesh as well as its 3D past and future motion. Our approach is designed so it can learn from videos with 2D pose annotations in a semi-supervised manner. Though annotated data is always limited, there are millions of videos uploaded daily on the Internet. In this work, we harvest this Internet-scale source of unlabeled data by training our model on unlabeled video with pseudo-ground truth 2D pose obtained from an off-the-shelf 2D pose detector. Our experiments show that adding more videos with pseudo-ground truth 2D pose monotonically improves 3D prediction performance. We evaluate our model, Human Mesh and Motion Recovery (HMMR), on the recent challenging dataset of 3D Poses in the Wild and obtain state-of-the-art performance on the 3D prediction task without any fine-tuning. The project website with video, code, and data can be found at https://akanazawa.github.io/ human_dynamics/.
translated by 谷歌翻译
从单眼RGB图像中捕获的3D人类运动捕获符合受试者与复杂且可能可变形的环境的相互作用的相互作用是一个非常具有挑战性,不足和探索不足的问题。现有方法仅薄弱地解决它,并且当人类与场景表面互动时,通常不会建模可能发生的表面变形。相比之下,本文提出了mocapdeform,即单眼3D人体运动捕获的新框架,该框架是第一个明确模拟3D场景的非刚性变形,以改善3D人体姿势估计和可变形环境的重建。 Mocapdeform接受单眼RGB视频,并在相机空间中对齐一个3D场景。它首先使用基于新的射线广播的策略将输入单眼视频中的主题以及密集的触点标签进行定位。接下来,我们的人类环境相互作用约束被利用以共同优化全局3D人类姿势和非刚性表面变形。 Mocapdeform比在几个数据集上的竞争方法获得了更高的精度,包括我们新记录的具有变形背景场景的方法。
translated by 谷歌翻译
由于遮挡引起的严重观察,基于手动对象相互作用的单个基于手动对象相互作用的重建具有挑战性。本文提出了一种基于物理的方法,以更好地解决重建中的歧义。它首先提出了一个基于力的动力学模型,该模型不仅恢复了未观察到的触点,而且还解决了合理的接触力。接下来,提出了一种基于置信的幻灯片预防方案,该方案将运动学上的信心和接触力都结合在一起,共同模拟静态和滑动接触运动。定性和定量实验表明,该提出的技术在物理上可行,更准确的手动相互作用,并使用单个RGBD传感器实时估计可见的接触力。
translated by 谷歌翻译
大多数实时人类姿势估计方法都基于检测接头位置。使用检测到的关节位置,可以计算偏差和肢体的俯仰。然而,由于这种旋转轴仍然不观察,因此不能计算沿着肢体沿着肢体至关重要的曲折,这对于诸如体育分析和计算机动画至关重要。在本文中,我们引入了方向关键点,一种用于估计骨骼关节的全位置和旋转的新方法,仅使用单帧RGB图像。灵感来自Motion-Capture Systems如何使用一组点标记来估计全骨骼旋转,我们的方法使用虚拟标记来生成足够的信息,以便准确地推断使用简单的后处理。旋转预测改善了接头角度最佳报告的平均误差48%,并且在15个骨骼旋转中实现了93%的精度。该方法还通过MPJPE在原理数据集上测量,通过MPJPE测量,该方法还改善了当前的最新结果14%,并概括为野外数据集。
translated by 谷歌翻译
培训视频中人类姿势估计的最先进模型需要具有很难获得的注释的数据集。尽管最近已将变压器用于身体姿势序列建模,但相关方法依靠伪地真相来增强目前有限的培训数据可用于学习此类模型。在本文中,我们介绍了Posebert,Posebert是一个通过掩盖建模对3D运动捕获(MOCAP)数据进行全面训练的变压器模块。它是简单,通用和通用的,因为它可以插入任何基于图像的模型的顶部,以在基于视频的模型中使用时间信息。我们展示了Posebert的变体,不同的输入从3D骨骼关键点到全身或仅仅是手(Mano)的3D参数模型的旋转。由于Posebert培训是任务不可知论的,因此该模型可以应用于姿势细化,未来的姿势预测或运动完成等几个任务。我们的实验结果验证了在各种最新姿势估计方法之上添加Posebert始终提高其性能,而其低计算成本使我们能够在实时演示中使用它,以通过A的机器人手使机器人手通过摄像头。可以在https://github.com/naver/posebert上获得测试代码和型号。
translated by 谷歌翻译
人类性能捕获是一种非常重要的计算机视觉问题,在电影制作和虚拟/增强现实中具有许多应用。许多以前的性能捕获方法需要昂贵的多视图设置,或者没有恢复具有帧到帧对应关系的密集时空相干几何。我们提出了一种新颖的深度致密人体性能捕获的深层学习方法。我们的方法是基于多视图监督的弱监督方式培训,完全删除了使用3D地面真理注释的培训数据的需求。网络架构基于两个单独的网络,将任务解散为姿势估计和非刚性表面变形步骤。广泛的定性和定量评估表明,我们的方法在质量和稳健性方面优于现有技术。这项工作是DeepCAP的扩展版本,在那里我们提供更详细的解释,比较和结果以及应用程序。
translated by 谷歌翻译
Estimating 3D human motion from an egocentric video sequence is critical to human behavior understanding and applications in VR/AR. However, naively learning a mapping between egocentric videos and human motions is challenging, because the user's body is often unobserved by the front-facing camera placed on the head of the user. In addition, collecting large-scale, high-quality datasets with paired egocentric videos and 3D human motions requires accurate motion capture devices, which often limit the variety of scenes in the videos to lab-like environments. To eliminate the need for paired egocentric video and human motions, we propose a new method, Ego-Body Pose Estimation via Ego-Head Pose Estimation (EgoEgo), that decomposes the problem into two stages, connected by the head motion as an intermediate representation. EgoEgo first integrates SLAM and a learning approach to estimate accurate head motion. Then, taking the estimated head pose as input, it leverages conditional diffusion to generate multiple plausible full-body motions. This disentanglement of head and body pose eliminates the need for training datasets with paired egocentric videos and 3D human motion, enabling us to leverage large-scale egocentric video datasets and motion capture datasets separately. Moreover, for systematic benchmarking, we develop a synthetic dataset, AMASS-Replica-Ego-Syn (ARES), with paired egocentric videos and human motion. On both ARES and real data, our EgoEgo model performs significantly better than the state-of-the-art.
translated by 谷歌翻译
人类抓握合成具有许多应用,包括AR / VR,视频游戏和机器人。虽然已经提出了一些方法来为对象抓握和操纵产生现实的手对象交互,但通常只考虑手动与对象交互。在这项工作中,我们的目标是综合全身掌握运动。鉴于3D对象,我们的目标是产生多样化和自然的全身人类动作,方法和掌握物体。这项任务是具有挑战性的,因为它需要建模全身动态和灵巧的手指运动。为此,我们提出了由两个关键部件组成的Saga(随机全身抓取):(a)静态全身抓取姿势。具体地,我们提出了一种多任务生成模型,共同学习静态全身抓姿和人对象触点。 (b)抓住运动infilling。鉴于初始姿势和产生的全身抓握姿势作为运动的起始和结束姿势,我们设计了一种新的联络感知生成运动infilling模块,以产生各种掌握的掌握运动。我们展示了我们方法是第一代生物和表达全身运动的第一代框架,该方法是随机放置并掌握未经看的对象的逼真和表达全身运动。代码和视频可用于:https://jiahaoplus.github.io/saga/saga.html。
translated by 谷歌翻译
当今的混合现实头戴式显示器显示了用户在世界空间中的头部姿势以及用户的手,以在增强现实和虚拟现实场景中进行互动。尽管这足以支持用户输入,但不幸的是,它仅限于用户的虚拟表示形式。因此,当前的系统诉诸于浮动化身,其限制在协作环境中尤为明显。为了估算稀疏输入源的全身姿势,先前的工作已在骨盆或下半身中融合了其他跟踪器和传感器,从而增加了设置的复杂性并限制了移动设置中的实际应用。在本文中,我们提出了AvatarPoser,这是第一个基于学习的方法,该方法仅使用用户头和手中的运动输入来预测世界坐标中的全身姿势。我们的方法建立在变压器编码器上,以从输入信号中提取深度特征,并将全局运动从学到的局部关节取向中解脱出来,以指导姿势估计。为了获得类似于运动捕获动画的准确全身运动,我们使用具有逆运动学的优化程序来完善臂关节位置,以匹配原始跟踪输入。在我们的评估中,AvatarPoser实现了新的最新最新结果,从而对大型运动捕获数据集(Amass)进行了评估。同时,我们的方法的推理速度支持实时操作,提供了一个实用的接口,以支持整体化的头像控制和元应用的表示形式。
translated by 谷歌翻译
由于其许多潜在应用,从视频中估算人类运动是一个活跃的研究领域。大多数最先进的方法可以预测单个图像的人类形状和姿势估计,并且不利用视频中可用的时间信息。许多“野生”运动序列被移动的摄像机捕获,这为估计增加了混合的摄像头和人类运动的并发症。因此,我们介绍了Bodyslam,这是一种单眼大满贯系统,共同估计人体的位置,形状和姿势以及摄像机轨迹。我们还引入了一种新型的人类运动模型,以限制顺序身体姿势并观察场景的规模。通过通过移动的单眼相机捕获的人类运动的视频序列进行的一系列实验,我们证明了Bodyslam与单独估计这些估计相比,可以改善所有人体参数和相机的估计。
translated by 谷歌翻译