From an image of a person in action, we can easily guess the 3D motion of the person in the immediate past and future. This is because we have a mental model of 3D human dynamics that we have acquired from observing visual sequences of humans in motion. We present a framework that can similarly learn a representation of 3D dynamics of humans from video via a simple but effective temporal encoding of image features. At test time, from video, the learned temporal representation give rise to smooth 3D mesh predictions. From a single image, our model can recover the current 3D mesh as well as its 3D past and future motion. Our approach is designed so it can learn from videos with 2D pose annotations in a semi-supervised manner. Though annotated data is always limited, there are millions of videos uploaded daily on the Internet. In this work, we harvest this Internet-scale source of unlabeled data by training our model on unlabeled video with pseudo-ground truth 2D pose obtained from an off-the-shelf 2D pose detector. Our experiments show that adding more videos with pseudo-ground truth 2D pose monotonically improves 3D prediction performance. We evaluate our model, Human Mesh and Motion Recovery (HMMR), on the recent challenging dataset of 3D Poses in the Wild and obtain state-of-the-art performance on the 3D prediction task without any fine-tuning. The project website with video, code, and data can be found at https://akanazawa.github.io/ human_dynamics/.
translated by 谷歌翻译
Figure 1: Given challenging in-the-wild videos, a recent state-of-the-art video-pose-estimation approach [31] (top), fails to produce accurate 3D body poses. To address this, we exploit a large-scale motion-capture dataset to train a motion discriminator using an adversarial approach. Our model (VIBE) (bottom) is able to produce realistic and accurate pose and shape, outperforming previous work on standard benchmarks.
translated by 谷歌翻译
Input Reconstruction Side and top down view Part Segmentation Input Reconstruction Side and top down view Part Segmentation Figure 1: Human Mesh Recovery (HMR): End-to-end adversarial learning of human pose and shape. We describe a real time framework for recovering the 3D joint angles and shape of the body from a single RGB image. The first two rowsshow results from our model trained with some 2D-to-3D supervision, the bottom row shows results from a model that is trained in a fully weakly-supervised manner without using any paired 2D-to-3D supervision. We infer the full 3D body even in case of occlusions and truncations. Note that we capture head and limb orientations.
translated by 谷歌翻译
培训视频中人类姿势估计的最先进模型需要具有很难获得的注释的数据集。尽管最近已将变压器用于身体姿势序列建模,但相关方法依靠伪地真相来增强目前有限的培训数据可用于学习此类模型。在本文中,我们介绍了Posebert,Posebert是一个通过掩盖建模对3D运动捕获(MOCAP)数据进行全面训练的变压器模块。它是简单,通用和通用的,因为它可以插入任何基于图像的模型的顶部,以在基于视频的模型中使用时间信息。我们展示了Posebert的变体,不同的输入从3D骨骼关键点到全身或仅仅是手(Mano)的3D参数模型的旋转。由于Posebert培训是任务不可知论的,因此该模型可以应用于姿势细化,未来的姿势预测或运动完成等几个任务。我们的实验结果验证了在各种最新姿势估计方法之上添加Posebert始终提高其性能,而其低计算成本使我们能够在实时演示中使用它,以通过A的机器人手使机器人手通过摄像头。可以在https://github.com/naver/posebert上获得测试代码和型号。
translated by 谷歌翻译
为了获取3D注释,我们仅限于受控环境或合成数据集,导致我们到3D数据集,其概括为现实世界方案。为了在半监督3D手形状和姿势估计的上下文中解决这个问题,我们提出了姿势对齐网络,以将标记帧传播到附近的稀疏注释视频中的附近未标记帧的3D注释。我们表明,在标记 - 未标记的帧对对对准监控允许我们提高姿态估计精度。此外,我们表明所提出的姿势对齐网络可以有效地传播在不良稀疏的视频上的注释而无需微调。
translated by 谷歌翻译
时间序列内的3D人体姿势和形状估计对于理解人类行为至关重要。尽管近年来人类姿势估计取得了重大进展,这些进展通常是基于单个图像或视频,但考虑到其对实时输出和时间一致性的特殊要求,实时视频中的人类运动估计仍然是一个很少的触摸区域。为了解决这个问题,我们提出了一个时间嵌入的3D人体姿势和形状估计(Tepose)方法,以提高实时流视频中姿势估计的准确性和时间一致性。 Tepose使用以前的预测作为反馈错误的桥梁,以在当前帧中更好地估计,并了解数据框架和历史上的预测之间的对应关系。多尺度时空图形卷积网络被视为使用数据集的运动判别器,用于对抗训练,而没有任何3D标记。我们提出了一个顺序数据加载策略,以满足实时流的特殊起始数据处理要求。我们通过广泛的实验证明了每个提出的模块的重要性。结果表明,多孔在具有最先进的性能的广泛使用的人姿势基准上的有效性。
translated by 谷歌翻译
从单个图像中感知3D人体的能力具有多种应用,从娱乐和机器人技术到神经科学和医疗保健。人类网格恢复中的一个基本挑战是收集训练所需的地面真相3D网格目标,这需要负担重大的运动捕获系统,并且通常仅限于室内实验室。结果,尽管在这些限制性设置中收集的基准数据集上取得了进展,但由于分配变化,模型无法推广到现实世界中的``野外''方案。我们提出了域自适应3D姿势增强(DAPA),这是一种数据增强方法,可增强模型在野外场景中的概括能力。 DAPA通过从综合网格中获得直接监督,并通过使用目标数据集的地面真相2D关键点来结合基于合成数据集的方法的强度。我们定量地表明,使用DAPA的填充有效地改善了基准3DPW和Agora的结果。我们进一步证明了DAPA在一个充满挑战的数据集中,该数据集从现实世界中亲子互动的视频中策划了。
translated by 谷歌翻译
了解来自第一人称观点的社交互动对于许多应用来说至关重要,从辅助机器人到AR / VR。谈论相互作用的第一步是理解人类的姿势和形状。但是,该领域的研究目前受到数据缺乏的阻碍。现有数据集根据大小,注释,地面真实捕获方式或相互作用的多样性有限。我们通过提出EGOBODY来解决这一缺点,这是一个用于复杂3D场景中的社交交互的新型大规模数据集。我们采用Microsoft Hololens2耳机来记录富裕的EGEntric数据流(包括RGB,深度,眼睛凝视,头部和手动跟踪)。为了获得准确的3D地面真理,我们将耳机用多kinect钻机校准并配合富有呈现的SMPL-X体网格到多视图RGB-D帧,重建3D人类姿势和相对于场景的形状。我们收集68个序列,跨越不同的社会学互动类别,并提出了从自我监视视图的3D全体姿态和形状估计的第一个基准。我们的数据集和代码将在https://sanweiliti.github.io/egobody/egobody.html中进行研究。
translated by 谷歌翻译
由于其许多潜在应用,从视频中估算人类运动是一个活跃的研究领域。大多数最先进的方法可以预测单个图像的人类形状和姿势估计,并且不利用视频中可用的时间信息。许多“野生”运动序列被移动的摄像机捕获,这为估计增加了混合的摄像头和人类运动的并发症。因此,我们介绍了Bodyslam,这是一种单眼大满贯系统,共同估计人体的位置,形状和姿势以及摄像机轨迹。我们还引入了一种新型的人类运动模型,以限制顺序身体姿势并观察场景的规模。通过通过移动的单眼相机捕获的人类运动的视频序列进行的一系列实验,我们证明了Bodyslam与单独估计这些估计相比,可以改善所有人体参数和相机的估计。
translated by 谷歌翻译
自上而下的方法主导了3D人类姿势和形状估计的领域,因为它们与人类的检测脱钩,并使研究人员能够专注于核心问题。但是,裁剪是他们的第一步,从一开始就丢弃了位置信息,这使自己无法准确预测原始摄像机坐标系中的全局旋转。为了解决此问题,我们建议将完整框架(悬崖)的位置信息携带到此任务中。具体而言,我们通过将裁剪图像功能与其边界盒信息连接在一起来养活更多的整体功能来悬崖。我们通过更广泛的全帧视图来计算2D再投影损失,进行了类似于图像中投射的人的投影过程。克里夫(Cliff)通过全球态度感知信息进行了喂养和监督,直接预测全球旋转以及更准确的明确姿势。此外,我们提出了一个基于Cliff的伪基真实注释,该注释为野外2D数据集提供了高质量的3D注释,并为基于回归的方法提供了至关重要的全面监督。对流行基准测试的广泛实验表明,悬崖的表现要超过先前的艺术,并在Agora排行榜上获得了第一名(SMPL-Algorithms曲目)。代码和数据可在https://github.com/huawei-noah/noah-research/tree/master/cliff中获得。
translated by 谷歌翻译
在本文中,我们提出了一种新的方法来增强从单个可佩戴相机捕获的视频计算的人的3D身体姿势估计。关键的想法是利用在联合嵌入空间中链接第一和第三次视图的高级功能。为了了解这样的嵌入空间,我们介绍了First2第三姿势,这是一个近2,000个视频的新配对同步数据集,描绘了从第一和第三视角捕获的人类活动。我们明确地考虑了空间和运动域功能,同时使用以自我监督的方式培训的半暹罗架构。实验结果表明,使用我们的数据集学习的联合多视图嵌入式空间可用于从任意单视图的自拍视频中提取歧视特征,而无需需要域适应,也不知道相机参数。在三种监督最先进的方法中,我们在两个无约束数据集中实现了重大改善了两个无约束的数据集。我们的数据集和代码将可用于研究目的。
translated by 谷歌翻译
我们介绍了TemPCLR,这是一种针对3D手重建的结构化回归任务的新的时代对比学习方法。与以前的手部姿势估计方法相抵触方法不同,我们的框架考虑了其增强方案中的时间一致性,并说明了沿时间方向的手部姿势的差异。我们的数据驱动方法利用了未标记的视频和标准CNN,而无需依赖合成数据,伪标签或专业体系结构。我们的方法在HO-3D和Freihand数据集中分别将全面监督的手部重建方法的性能提高了15.9%和7.6%,从而确立了新的最先进的性能。最后,我们证明了我们的方法会随着时间的推移产生更平滑的手部重建,并且与以前的最新作品相比,对重型的闭塞更为强大,我们在定量和定性上表现出来。我们的代码和模型将在https://eth-ait.github.io/tempclr上找到。
translated by 谷歌翻译
人类运动合成是机器人技术的图形,游戏和仿真环境中应用的重要问题。现有方法需要准确的运动捕获数据进行培训,这是昂贵的。取而代之的是,我们为直接从单眼RGB视频中训练物理上合理的人类运动的生成模型提出了一个框架,该模型更广泛地可用。我们方法的核心是一种新颖的优化公式,该公式通过以可区分的方式执行物理限制和有关接触的原因来纠正不完美的基于图像的姿势估计。该优化得出校正后的3D姿势和运动及其相应的接触力。结果表明,我们的物理校正运动在姿势估计上显着优于先前的工作。然后,我们可以使用它们来训练生成模型来综合未来的运动。与先前的基于运动学和物理学的方法相比,我们在人类36m数据集中〜\ cite {H36M_P​​AMI}实现了定性和定量改进的运动估计,合成质量和物理合理性。通过从视频中学习运动合成,我们的方法为大规模,现实和多样化的运动合成铺平了道路。项目页面:\ url {https://nv-tlabs.github.io/publication/iccv_2021_physics/}
translated by 谷歌翻译
尽管近年来3D人姿势和形状估计方法的性能显着提高,但是现有方法通常在相机或以人为本的坐标系中定义的3D姿势。这使得难以估计使用移动相机捕获的视频的世界坐标系中的人的纯姿势和运动。为了解决这个问题,本文提出了一种用于预测世界坐标系中定义的3D人姿势和网格的相机运动不可知论方法。所提出的方法的核心思想是估计不变选择坐标系的两个相邻的全局姿势(即全局运动)之间的差异,而不是耦合到相机运动的全局姿势。为此,我们提出了一种基于双向门控复发单元(GRUS)的网络,该单元从局部姿势序列预测全局运动序列,由称为全局运动回归(GMR)的关节相对旋转组成。我们使用3DPW和合成数据集,该数据集在移动相机环境中构建,进行评估。我们进行广泛的实验,并经验证明了提出的方法的有效性。代码和数据集可在https://github.com/seonghyunkim1212/gmr获得
translated by 谷歌翻译
推断人类场景接触(HSC)是了解人类如何与周围环境相互作用的第一步。尽管检测2D人类对象的相互作用(HOI)和重建3D人姿势和形状(HPS)已经取得了重大进展,但单个图像的3D人习惯接触的推理仍然具有挑战性。现有的HSC检测方法仅考虑几种类型的预定义接触,通常将身体和场景降低到少数原语,甚至忽略了图像证据。为了预测单个图像的人类场景接触,我们从数据和算法的角度解决了上述局限性。我们捕获了一个名为“真实场景,互动,联系和人类”的新数据集。 Rich在4K分辨率上包含多视图室外/室内视频序列,使用无标记运动捕获,3D身体扫描和高分辨率3D场景扫描捕获的地面3D人体。 Rich的一个关键特征是它还包含身体上精确的顶点级接触标签。使用Rich,我们训练一个网络,该网络可预测单个RGB图像的密集车身场景接触。我们的主要见解是,接触中的区域总是被阻塞,因此网络需要能够探索整个图像以获取证据。我们使用变压器学习这种非本地关系,并提出新的身体场景接触变压器(BSTRO)。很少有方法探索3D接触;那些只专注于脚的人,将脚接触作为后处理步骤,或从身体姿势中推断出无需看现场的接触。据我们所知,BSTRO是直接从单个图像中直接估计3D身体场景接触的方法。我们证明,BSTRO的表现明显优于先前的艺术。代码和数据集可在https://rich.is.tue.mpg.de上获得。
translated by 谷歌翻译
人类不断与日常对象互动以完成任务。为了了解这种相互作用,计算机需要从观察全身与场景的全身相互作用的相机中重建这些相互作用。由于身体和物体之间的阻塞,运动模糊,深度/比例模棱两可以及手和可抓握的物体零件的低图像分辨率,这是具有挑战性的。为了使问题可以解决,社区要么专注于互动的手,忽略身体或互动的身体,无视双手。 Grab数据集解决了灵活的全身互动,但使用基于标记的MOCAP并缺少图像,而行为则捕获了身体对象互动的视频,但缺乏手动细节。我们使用参数全身模型SMPL-X和已知的对象网格来解决一种新的方法,该方法与Intercap的先前工作局限性,该方法是一种新的方法,可重建从多视图RGB-D数据进行交互的整体和对象。为了应对上述挑战,Intercap使用了两个关键观察:(i)可以使用手和物体之间的接触来改善两者的姿势估计。 (ii)Azure Kinect传感器使我们能够建立一个简单的多视图RGB-D捕获系统,该系统在提供合理的相机间同步时最小化遮挡的效果。使用此方法,我们捕获了Intercap数据集,其中包含10个受试者(5名男性和5个女性)与10个各种尺寸和负担的物体相互作用,包括与手或脚接触。 Intercap总共有223个RGB-D视频,产生了67,357个多视图帧,每个帧包含6个RGB-D图像。我们的方法为每个视频框架提供了伪真正的身体网格和对象。我们的Intercap方法和数据集填补了文献中的重要空白,并支持许多研究方向。我们的数据和代码可用于研究目的。
translated by 谷歌翻译
我们考虑从野外拥挤的场景中恢复一个人的3D人网格的问题。尽管在3D人网估计中取得了很多进展,但当测试输入的场景拥挤时,现有的方法很难。失败的第一个原因是训练和测试数据之间的域间隙。一个运动捕获数据集为训练提供准确的3D标签,缺乏人群数据,并阻碍了网络无法学习目标人的拥挤场景射击图像特征。第二个原因是功能处理,该功能处理在空间上平均包含多个人的本地化边界框的特征图。平均整个功能映射使目标人的特征与他人无法区分。我们提出了3dcrowdnet,首先要明确针对野生野外的场景,并通过解决上述问题来估算强大的3D人网。首先,我们利用2D人姿势估计不需要带有3D标签的运动捕获数据集进行训练,并且不受域间隙的困扰。其次,我们提出了一个基于联合的回归器,将目标人的特征与他人区分开来。我们的基于联合的回归器通过对目标关节位置的采样特征来保留目标的空间激活并回归人类模型参数。结果,3DCORDNET学习了针对目标的功能,并有效地排除了附近人的无关特征。我们对各种基准进行实验,并证明3dcrowdnet对野外拥挤的场景的鲁棒性在定量和定性上。该代码可在https://github.com/hongsukchoi/3dcrowdnet_release上获得。
translated by 谷歌翻译
In this work, we demonstrate that 3D poses in video can be effectively estimated with a fully convolutional model based on dilated temporal convolutions over 2D keypoints. We also introduce back-projection, a simple and effective semi-supervised training method that leverages unlabeled video data. We start with predicted 2D keypoints for unlabeled video, then estimate 3D poses and finally back-project to the input 2D keypoints. In the supervised setting, our fully-convolutional model outperforms the previous best result from the literature by 6 mm mean per-joint position error on Human3.6M, corresponding to an error reduction of 11%, and the model also shows significant improvements on HumanEva-I. Moreover, experiments with back-projection show that it comfortably outperforms previous state-of-the-art results in semisupervised settings where labeled data is scarce. Code and models are available at https://github.com/ facebookresearch/VideoPose3D
translated by 谷歌翻译
This work addresses the problem of estimating the full body 3D human pose and shape from a single color image. This is a task where iterative optimization-based solutions have typically prevailed, while Convolutional Networks (ConvNets) have suffered because of the lack of training data and their low resolution 3D predictions. Our work aims to bridge this gap and proposes an efficient and effective direct prediction method based on ConvNets. Central part to our approach is the incorporation of a parametric statistical body shape model (SMPL) within our end-to-end framework. This allows us to get very detailed 3D mesh results, while requiring estimation only of a small number of parameters, making it friendly for direct network prediction. Interestingly, we demonstrate that these parameters can be predicted reliably only from 2D keypoints and masks. These are typical outputs of generic 2D human analysis ConvNets, allowing us to relax the massive requirement that images with 3D shape ground truth are available for training. Simultaneously, by maintaining differentiability, at training time we generate the 3D mesh from the estimated parameters and optimize explicitly for the surface using a 3D per-vertex loss. Finally, a differentiable renderer is employed to project the 3D mesh to the image, which enables further refinement of the network, by optimizing for the consistency of the projection with 2D annotations (i.e., 2D keypoints or masks). The proposed approach outperforms previous baselines on this task and offers an attractive solution for direct prediction of 3D shape from a single color image.
translated by 谷歌翻译
人类性能捕获是一种非常重要的计算机视觉问题,在电影制作和虚拟/增强现实中具有许多应用。许多以前的性能捕获方法需要昂贵的多视图设置,或者没有恢复具有帧到帧对应关系的密集时空相干几何。我们提出了一种新颖的深度致密人体性能捕获的深层学习方法。我们的方法是基于多视图监督的弱监督方式培训,完全删除了使用3D地面真理注释的培训数据的需求。网络架构基于两个单独的网络,将任务解散为姿势估计和非刚性表面变形步骤。广泛的定性和定量评估表明,我们的方法在质量和稳健性方面优于现有技术。这项工作是DeepCAP的扩展版本,在那里我们提供更详细的解释,比较和结果以及应用程序。
translated by 谷歌翻译