从单个图像中感知3D人体的能力具有多种应用,从娱乐和机器人技术到神经科学和医疗保健。人类网格恢复中的一个基本挑战是收集训练所需的地面真相3D网格目标,这需要负担重大的运动捕获系统,并且通常仅限于室内实验室。结果,尽管在这些限制性设置中收集的基准数据集上取得了进展,但由于分配变化,模型无法推广到现实世界中的``野外''方案。我们提出了域自适应3D姿势增强(DAPA),这是一种数据增强方法,可增强模型在野外场景中的概括能力。 DAPA通过从综合网格中获得直接监督,并通过使用目标数据集的地面真相2D关键点来结合基于合成数据集的方法的强度。我们定量地表明,使用DAPA的填充有效地改善了基准3DPW和Agora的结果。我们进一步证明了DAPA在一个充满挑战的数据集中,该数据集从现实世界中亲子互动的视频中策划了。
translated by 谷歌翻译
全面监督的人类网格恢复方法是渴望数据的,由于3D规定基准数据集的可用性有限和多样性,因此具有较差的概括性。使用合成数据驱动的训练范例,已经从合成配对的2D表示(例如2D关键点和分段掩码)和3D网格中训练了模型的最新进展,其中已使用合成数据驱动的训练范例和3D网格进行了训练。但是,由于合成训练数据和实际测试数据之间的域间隙很难解决2D密集表示,因此很少探索合成密集的对应图(即IUV)。为了减轻IUV上的这个领域差距,我们提出了使用可靠但稀疏表示的互补信息(2D关键点)提出的交叉代理对齐。具体而言,初始网格估计和两个2D表示之间的比对误差将转发为回归器,并在以下网格回归中动态校正。这种适应性的交叉代理对准明确地从偏差和捕获互补信息中学习:从稀疏的表示和浓郁的浓度中的稳健性。我们对多个标准基准数据集进行了广泛的实验,并展示了竞争结果,帮助减少在人类网格估计中生产最新模型所需的注释工作。
translated by 谷歌翻译
人类姿势和形状估计的任务中的关键挑战是闭塞,包括自闭合,对象 - 人闭塞和人际闭塞。缺乏多样化和准确的姿势和形状训练数据成为一个主要的瓶颈,特别是对于野外闭塞的场景。在本文中,我们专注于在人际闭塞的情况下估计人类姿势和形状,同时处理对象 - 人闭塞和自动闭塞。我们提出了一种新颖的框架,该框架综合了遮挡感知的轮廓和2D关键点数据,并直接回归到SMPL姿势和形状参数。利用神经3D网格渲染器以启用剪影监控,这有助于形状估计的巨大改进。此外,合成了全景视点中的关键点和轮廓驱动的训练数据,以补偿任何现有数据集中缺乏视点的多样性。实验结果表明,在姿势估计准确性方面,我们在3DPW和3DPW-Crowd数据集中是最先进的。所提出的方法在形状估计方面显着优于秩1方法。在形状预测精度方面,SSP-3D还实现了顶级性能。
translated by 谷歌翻译
在本文中,我们考虑了同时找到和从单个2D图像中恢复多手的具有挑战性的任务。先前的研究要么关注单手重建,要么以多阶段的方式解决此问题。此外,常规的两阶段管道首先检测到手部区域,然后估计每个裁剪贴片的3D手姿势。为了减少预处理和特征提取中的计算冗余,我们提出了一条简洁但有效的单阶段管道。具体而言,我们为多手重建设计了多头自动编码器结构,每个HEAD网络分别共享相同的功能图并分别输出手动中心,姿势和纹理。此外,我们采用了一个弱监督的计划来减轻昂贵的3D现实世界数据注释的负担。为此,我们提出了一系列通过舞台训练方案优化的损失,其中根据公开可用的单手数据集生成具有2D注释的多手数据集。为了进一步提高弱监督模型的准确性,我们在单手和多个手设置中采用了几个功能一致性约束。具体而言,从本地功能估算的每只手的关键点应与全局功能预测的重新投影点一致。在包括Freihand,HO3D,Interhand 2.6M和RHD在内的公共基准测试的广泛实验表明,我们的方法在弱监督和完全监督的举止中优于基于最先进的模型方法。代码和模型可在{\ url {https://github.com/zijinxuxu/smhr}}上获得。
translated by 谷歌翻译
Input Reconstruction Side and top down view Part Segmentation Input Reconstruction Side and top down view Part Segmentation Figure 1: Human Mesh Recovery (HMR): End-to-end adversarial learning of human pose and shape. We describe a real time framework for recovering the 3D joint angles and shape of the body from a single RGB image. The first two rowsshow results from our model trained with some 2D-to-3D supervision, the bottom row shows results from a model that is trained in a fully weakly-supervised manner without using any paired 2D-to-3D supervision. We infer the full 3D body even in case of occlusions and truncations. Note that we capture head and limb orientations.
translated by 谷歌翻译
推断人类场景接触(HSC)是了解人类如何与周围环境相互作用的第一步。尽管检测2D人类对象的相互作用(HOI)和重建3D人姿势和形状(HPS)已经取得了重大进展,但单个图像的3D人习惯接触的推理仍然具有挑战性。现有的HSC检测方法仅考虑几种类型的预定义接触,通常将身体和场景降低到少数原语,甚至忽略了图像证据。为了预测单个图像的人类场景接触,我们从数据和算法的角度解决了上述局限性。我们捕获了一个名为“真实场景,互动,联系和人类”的新数据集。 Rich在4K分辨率上包含多视图室外/室内视频序列,使用无标记运动捕获,3D身体扫描和高分辨率3D场景扫描捕获的地面3D人体。 Rich的一个关键特征是它还包含身体上精确的顶点级接触标签。使用Rich,我们训练一个网络,该网络可预测单个RGB图像的密集车身场景接触。我们的主要见解是,接触中的区域总是被阻塞,因此网络需要能够探索整个图像以获取证据。我们使用变压器学习这种非本地关系,并提出新的身体场景接触变压器(BSTRO)。很少有方法探索3D接触;那些只专注于脚的人,将脚接触作为后处理步骤,或从身体姿势中推断出无需看现场的接触。据我们所知,BSTRO是直接从单个图像中直接估计3D身体场景接触的方法。我们证明,BSTRO的表现明显优于先前的艺术。代码和数据集可在https://rich.is.tue.mpg.de上获得。
translated by 谷歌翻译
From an image of a person in action, we can easily guess the 3D motion of the person in the immediate past and future. This is because we have a mental model of 3D human dynamics that we have acquired from observing visual sequences of humans in motion. We present a framework that can similarly learn a representation of 3D dynamics of humans from video via a simple but effective temporal encoding of image features. At test time, from video, the learned temporal representation give rise to smooth 3D mesh predictions. From a single image, our model can recover the current 3D mesh as well as its 3D past and future motion. Our approach is designed so it can learn from videos with 2D pose annotations in a semi-supervised manner. Though annotated data is always limited, there are millions of videos uploaded daily on the Internet. In this work, we harvest this Internet-scale source of unlabeled data by training our model on unlabeled video with pseudo-ground truth 2D pose obtained from an off-the-shelf 2D pose detector. Our experiments show that adding more videos with pseudo-ground truth 2D pose monotonically improves 3D prediction performance. We evaluate our model, Human Mesh and Motion Recovery (HMMR), on the recent challenging dataset of 3D Poses in the Wild and obtain state-of-the-art performance on the 3D prediction task without any fine-tuning. The project website with video, code, and data can be found at https://akanazawa.github.io/ human_dynamics/.
translated by 谷歌翻译
Figure 1: Given challenging in-the-wild videos, a recent state-of-the-art video-pose-estimation approach [31] (top), fails to produce accurate 3D body poses. To address this, we exploit a large-scale motion-capture dataset to train a motion discriminator using an adversarial approach. Our model (VIBE) (bottom) is able to produce realistic and accurate pose and shape, outperforming previous work on standard benchmarks.
translated by 谷歌翻译
Model-based human pose estimation is currently approached through two different paradigms. Optimizationbased methods fit a parametric body model to 2D observations in an iterative manner, leading to accurate imagemodel alignments, but are often slow and sensitive to the initialization. In contrast, regression-based methods, that use a deep network to directly estimate the model parameters from pixels, tend to provide reasonable, but not pixel accurate, results while requiring huge amounts of supervision. In this work, instead of investigating which approach is better, our key insight is that the two paradigms can form a strong collaboration. A reasonable, directly regressed estimate from the network can initialize the iterative optimization making the fitting faster and more accurate. Similarly, a pixel accurate fit from iterative optimization can act as strong supervision for the network. This is the core of our proposed approach SPIN (SMPL oPtimization IN the loop). The deep network initializes an iterative optimization routine that fits the body model to 2D joints within the training loop, and the fitted estimate is subsequently used to supervise the network. Our approach is self-improving by nature, since better network estimates can lead the optimization to better solutions, while more accurate optimization fits provide better supervision for the network. We demonstrate the effectiveness of our approach in different settings, where 3D ground truth is scarce, or not available, and we consistently outperform the state-of-the-art model-based pose estimation approaches by significant margins. The project website with videos, results, and code can be found at https://seas.upenn.edu/ ˜nkolot/projects/spin.
translated by 谷歌翻译
This work addresses the problem of estimating the full body 3D human pose and shape from a single color image. This is a task where iterative optimization-based solutions have typically prevailed, while Convolutional Networks (ConvNets) have suffered because of the lack of training data and their low resolution 3D predictions. Our work aims to bridge this gap and proposes an efficient and effective direct prediction method based on ConvNets. Central part to our approach is the incorporation of a parametric statistical body shape model (SMPL) within our end-to-end framework. This allows us to get very detailed 3D mesh results, while requiring estimation only of a small number of parameters, making it friendly for direct network prediction. Interestingly, we demonstrate that these parameters can be predicted reliably only from 2D keypoints and masks. These are typical outputs of generic 2D human analysis ConvNets, allowing us to relax the massive requirement that images with 3D shape ground truth are available for training. Simultaneously, by maintaining differentiability, at training time we generate the 3D mesh from the estimated parameters and optimize explicitly for the surface using a 3D per-vertex loss. Finally, a differentiable renderer is employed to project the 3D mesh to the image, which enables further refinement of the network, by optimizing for the consistency of the projection with 2D annotations (i.e., 2D keypoints or masks). The proposed approach outperforms previous baselines on this task and offers an attractive solution for direct prediction of 3D shape from a single color image.
translated by 谷歌翻译
培训视频中人类姿势估计的最先进模型需要具有很难获得的注释的数据集。尽管最近已将变压器用于身体姿势序列建模,但相关方法依靠伪地真相来增强目前有限的培训数据可用于学习此类模型。在本文中,我们介绍了Posebert,Posebert是一个通过掩盖建模对3D运动捕获(MOCAP)数据进行全面训练的变压器模块。它是简单,通用和通用的,因为它可以插入任何基于图像的模型的顶部,以在基于视频的模型中使用时间信息。我们展示了Posebert的变体,不同的输入从3D骨骼关键点到全身或仅仅是手(Mano)的3D参数模型的旋转。由于Posebert培训是任务不可知论的,因此该模型可以应用于姿势细化,未来的姿势预测或运动完成等几个任务。我们的实验结果验证了在各种最新姿势估计方法之上添加Posebert始终提高其性能,而其低计算成本使我们能够在实时演示中使用它,以通过A的机器人手使机器人手通过摄像头。可以在https://github.com/naver/posebert上获得测试代码和型号。
translated by 谷歌翻译
To facilitate the analysis of human actions, interactions and emotions, we compute a 3D model of human body pose, hand pose, and facial expression from a single monocular image. To achieve this, we use thousands of 3D scans to train a new, unified, 3D model of the human body, SMPL-X, that extends SMPL with fully articulated hands and an expressive face. Learning to regress the parameters of SMPL-X directly from images is challenging without paired images and 3D ground truth. Consequently, we follow the approach of SMPLify, which estimates 2D features and then optimizes model parameters to fit the features. We improve on SMPLify in several significant ways: (1) we detect 2D features corresponding to the face, hands, and feet and fit the full SMPL-X model to these; (2) we train a new neural network pose prior using a large MoCap dataset; (3) we define a new interpenetration penalty that is both fast and accurate; (4) we automatically detect gender and the appropriate body models (male, female, or neutral); (5) our PyTorch implementation achieves a speedup of more than 8× over Chumpy. We use the new method, SMPLify-X, to fit SMPL-X to both controlled images and images in the wild. We evaluate 3D accuracy on a new curated dataset comprising 100 images with pseudo ground-truth. This is a step towards automatic expressive human capture from monocular RGB data. The models, code, and data are available for research purposes at https://smpl-x.is.tue.mpg.de.
translated by 谷歌翻译
基于图像和视频的3D人类恢复(即姿势和形状估计)取得了实质性进展。但是,由于运动捕获的高度成本,现有的数据集通常受到规模和多样性的限制。在这项工作中,我们通过使用自动注释的3D地面真相玩电子游戏来获得大量的人类序列。具体来说,我们贡献了GTA-Human,这是一种由GTA-V游戏引擎生成的大规模3D人类数据集,具有高度多样化的主题,动作和场景。更重要的是,我们研究游戏玩法数据的使用并获得五个主要见解。首先,游戏数据非常有效。基于框架的简单基线对GTA-Human训练,其优于更复杂的方法的幅度很大。对于基于视频的方法,GTA-Human甚至与内域训练集相当。其次,我们发现合成数据为通常在室内收集的真实数据提供了关键补充。我们对域间隙的调查为简单但有用的数据混合策略提供了解释。第三,数据集的比例很重要。性能提升与可用的其他数据密切相关。一项系统的研究揭示了来自多个关键方面的数据密度的模型敏感性。第四,GTA-Human的有效性还归因于丰富的强制监督标签(SMPL参数),在实际数据集中获取否则它们很昂贵。第五,合成数据的好处扩展到较大的模型,例如更深层次的卷积神经网络(CNN)和变压器,也观察到了重大影响。我们希望我们的工作可以为将3D人类恢复到现实世界铺平道路。主页:https://caizhongang.github.io/projects/gta-human/
translated by 谷歌翻译
我们考虑将人体网格重建模型调整为域外流媒体视频的新问题,其中现有的基于SMPL的模型的性能受到不同相机参数,骨长,背景和闭塞的分布换档的显着影响。我们通过在线适应来解决这个问题,逐渐在测试期间纠正模型偏差。有两个主要挑战:首先,缺乏3D注释增加了培训难度并导致3D模糊。其次,非静止数据分布使得难以在拟合常规帧和硬样之间的平衡,具有严重的闭塞或戏剧性的变化。为此,我们提出了动态Bilevel在线适应算法(Dynaboa)。它首先介绍了用于补偿不可用的3D注释的时间约束,并利用BileVel优化过程来解决多目标之间的冲突。 Dynaboa通过使用类似的来源示例提供了额外的3D指导,尽管分布换档。此外,它可以自适应地调整各个帧上的​​优化步骤的数量,以完全适合硬样品并避免过度拟合常规帧。 Dynaboa在三个域名人网格重建基准上实现最先进的结果。
translated by 谷歌翻译
自上而下的方法主导了3D人类姿势和形状估计的领域,因为它们与人类的检测脱钩,并使研究人员能够专注于核心问题。但是,裁剪是他们的第一步,从一开始就丢弃了位置信息,这使自己无法准确预测原始摄像机坐标系中的全局旋转。为了解决此问题,我们建议将完整框架(悬崖)的位置信息携带到此任务中。具体而言,我们通过将裁剪图像功能与其边界盒信息连接在一起来养活更多的整体功能来悬崖。我们通过更广泛的全帧视图来计算2D再投影损失,进行了类似于图像中投射的人的投影过程。克里夫(Cliff)通过全球态度感知信息进行了喂养和监督,直接预测全球旋转以及更准确的明确姿势。此外,我们提出了一个基于Cliff的伪基真实注释,该注释为野外2D数据集提供了高质量的3D注释,并为基于回归的方法提供了至关重要的全面监督。对流行基准测试的广泛实验表明,悬崖的表现要超过先前的艺术,并在Agora排行榜上获得了第一名(SMPL-Algorithms曲目)。代码和数据可在https://github.com/huawei-noah/noah-research/tree/master/cliff中获得。
translated by 谷歌翻译
基于回归的方法可以通过直接以馈送方式将原始像素直接映射到模型参数来估算从单眼图像的身体,手甚至全身模型。但是,参数的微小偏差可能导致估计的网格和输入图像之间的明显未对准,尤其是在全身网格恢复的背景下。为了解决这个问题,我们建议在我们的回归网络中进行锥体网状对准反馈(PYMAF)循环,以进行良好的人类网格恢复,并将其扩展到PYMAF-X,以恢复表达全身模型。 PYMAF的核心思想是利用特征金字塔并根据网格图像对准状态明确纠正预测参数。具体而言,给定当前预测的参数,将相应地从更优质的特征中提取网格对准的证据,并将其送回以进行参数回流。为了增强一致性的看法,采用辅助密集的监督来提供网格图像对应指南,同时引入了空间对齐的注意,以使我们的网络对全球环境的认识。当扩展PYMAF以进行全身网状恢复时,PYMAF-X中提出了一种自适应整合策略来调整肘部扭转旋转,该旋转会产生自然腕部姿势,同时保持部分特定估计的良好性能。我们的方法的功效在几个基准数据集上得到了验证,以实现身体和全身网状恢复,在该数据集中,PYMAF和PYMAF-X有效地改善了网格图像的对准并实现了新的最新结果。具有代码和视频结果的项目页面可以在https://www.liuyebin.com/pymaf-x上找到。
translated by 谷歌翻译
大多数实时人类姿势估计方法都基于检测接头位置。使用检测到的关节位置,可以计算偏差和肢体的俯仰。然而,由于这种旋转轴仍然不观察,因此不能计算沿着肢体沿着肢体至关重要的曲折,这对于诸如体育分析和计算机动画至关重要。在本文中,我们引入了方向关键点,一种用于估计骨骼关节的全位置和旋转的新方法,仅使用单帧RGB图像。灵感来自Motion-Capture Systems如何使用一组点标记来估计全骨骼旋转,我们的方法使用虚拟标记来生成足够的信息,以便准确地推断使用简单的后处理。旋转预测改善了接头角度最佳报告的平均误差48%,并且在15个骨骼旋转中实现了93%的精度。该方法还通过MPJPE在原理数据集上测量,通过MPJPE测量,该方法还改善了当前的最新结果14%,并概括为野外数据集。
translated by 谷歌翻译
了解来自第一人称观点的社交互动对于许多应用来说至关重要,从辅助机器人到AR / VR。谈论相互作用的第一步是理解人类的姿势和形状。但是,该领域的研究目前受到数据缺乏的阻碍。现有数据集根据大小,注释,地面真实捕获方式或相互作用的多样性有限。我们通过提出EGOBODY来解决这一缺点,这是一个用于复杂3D场景中的社交交互的新型大规模数据集。我们采用Microsoft Hololens2耳机来记录富裕的EGEntric数据流(包括RGB,深度,眼睛凝视,头部和手动跟踪)。为了获得准确的3D地面真理,我们将耳机用多kinect钻机校准并配合富有呈现的SMPL-X体网格到多视图RGB-D帧,重建3D人类姿势和相对于场景的形状。我们收集68个序列,跨越不同的社会学互动类别,并提出了从自我监视视图的3D全体姿态和形状估计的第一个基准。我们的数据集和代码将在https://sanweiliti.github.io/egobody/egobody.html中进行研究。
translated by 谷歌翻译
闭塞对单眼多人3D人体姿势估计构成了极大的威胁,这是由于封闭器的形状,外观和位置方面的差异很大。尽管现有的方法试图用姿势先验/约束,数据增强或隐性推理处理遮挡,但它们仍然无法概括地看不见姿势或遮挡案例,并且在出现多人时可能会犯大错误。受到人类从可见线索推断关节的显着能力的启发,我们开发了一种方法来显式建模该过程,该过程可以显着改善有或没有遮挡的情况下,可以显着改善自下而上的多人姿势估计。首先,我们将任务分为两个子任务:可见的关键点检测和遮挡的关键点推理,并提出了深入监督的编码器蒸馏(DSED)网络以求解第二个网络。为了训练我们的模型,我们提出了一种骨骼引导的人形拟合(SSF)方法,以在现有数据集上生成伪遮挡标签,从而实现明确的遮挡推理。实验表明,从遮挡中明确学习可以改善人类姿势估计。此外,利用可见关节的特征级信息使我们可以更准确地推理遮挡关节。我们的方法的表现优于几个基准的最新自上而下和自下而上的方法。
translated by 谷歌翻译
传统的3D人姿态估计依赖于首次检测2D身体键盘,然后求解2D到3D对应问题。提高有希望的结果,该学习范例高度依赖于2D关键点检测器的质量,这不可避免地易于闭塞和堵塞-of-image缺席。在本文中,我们提出了一种新颖的姿势定向网(PONET),其能够仅通过学习方向估计3D姿势,因此在没有图像证据的情况下绕过错误易于keypoint检测器。对于具有部分不可见的四肢的图像,Ponet通过利用本地图像证据来恢复3D姿势来估计这些肢体的3D方向。通过利用完全看不见的四肢来说,Ponet甚至可以从完全看不见的四肢的图像中推断出完整的3D姿势。可见肢体之间的取向相关性以补充估计的姿势,进一步提高了3D姿态估计的鲁棒性。我们在多个数据集中评估我们的方法,包括Human3.6M,MPII,MPI-INF-3DHP和3DPW。我们的方法在理想设置中实现了与最先进的技术的结果,但显着消除了对关键点检测器和相应的计算负担的依赖性。在截断和擦除等方面的高度挑战性方案中,我们的方法稳健地表现得非常强大,与本领域的状态相比,展示其对现实世界应用的可能性。
translated by 谷歌翻译