正确捕获图像引导的神经外科手术中的术中大脑转移是将术前数据与术中几何形状对齐的关键任务,以确保准确的手术导航。虽然有限元方法(FEM)是一种经过验证的技术,可以通过生物力学制剂有效地近似软组织变形,但其成功程度归结为准确性和速度之间的权衡。为了解决这个问题,该领域的最新作品提出了通过训练各种机器学习算法获得的数据驱动模型,例如随机森林,人工神经网络(ANN),以及有限元分析(FEA)的结果,以通过预测加快组织变形近似。但是,这些方法在训练过程中不考虑有限元(Fe)网格的结构,该培训提供了有关节点连接性以及它们之间的距离的信息,这可以帮助基于力量负载点的近距离组织近似组织变形带有其余的网状节点。因此,这项工作提出了一个新颖的框架Physgnn,一种数据驱动的模型,该模型通过利用图形神经网络(GNN)近似于FEM的解决方案,该模型能够考虑到网格结构信息和对非结构性网格的网格结构信息和归纳学习结构。从经验上讲,我们证明了所提出的体系结构有望准确且快速的软组织变形近似值,并且与最新的(SOTA)算法具有竞争力,同时有望增强的计算可行性,因此适用于神经外科手术环境。
translated by 谷歌翻译
Deep learning surrogate models are being increasingly used in accelerating scientific simulations as a replacement for costly conventional numerical techniques. However, their use remains a significant challenge when dealing with real-world complex examples. In this work, we demonstrate three types of neural network architectures for efficient learning of highly non-linear deformations of solid bodies. The first two architectures are based on the recently proposed CNN U-NET and MAgNET (graph U-NET) frameworks which have shown promising performance for learning on mesh-based data. The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks--a class that has revolutionised diverse engineering fields and is still unexplored in computational mechanics. We study and compare the performance of all three networks on two benchmark examples, and show their capabilities to accurately predict the non-linear mechanical responses of soft bodies.
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
机器人中的一个重要挑战是了解机器人与由粒状材料组成的可变形地形之间的相互作用。颗粒状流量及其与刚体的互动仍然造成了几个开放的问题。有希望的方向,用于准确,且有效的建模使用的是使用连续体方法。此外,实时物理建模的新方向是利用深度学习。该研究推进了用于对刚性体驱动颗粒流建模的机器学习方法,用于应用于地面工业机器以及空间机器人(重力的效果是一个重要因素的地方)。特别是,该研究考虑了子空间机器学习仿真方法的开发。要生成培训数据集,我们利用我们的高保真连续体方法,材料点法(MPM)。主要成分分析(PCA)用于降低数据的维度。我们表明我们的高维数据的前几个主要组成部分几乎保持了数据的整个方差。培训图形网络模拟器(GNS)以学习底层子空间动态。然后,学习的GNS能够以良好的准确度预测颗粒位置和交互力。更重要的是,PCA在训练和卷展栏中显着提高了GNS的时间和记忆效率。这使得GNS能够使用具有中等VRAM的单个桌面GPU进行培训。这也使GNS实时在大规模3D物理配置(比我们的连续方法快700倍)。
translated by 谷歌翻译
作为在受边界价值约束下的部分微分方程(PDE)的经典数值求解器的替代方案,人们对研究可以有效解决此类问题的神经网络引起了人们的兴趣。在这项工作中,我们使用图神经网络(GNN)和光谱图卷积为两个不同时间独立的PDE设计了一个通用解决方案操作员。我们从有限元求解器的模拟数据上训练网络,以了解各种形状和不均匀性。与以前的作品相反,我们专注于受过训练的操作员概括以前看不见的情况的能力。具体而言,我们测试对不同形状和解决方案叠加的网格的概括,以确保不同数量的不均匀性。我们发现,在有限元网格中有很大变化的不同数据集进行培训是在所有情况下都能实现良好概括结果的关键要素。因此,我们认为GNN可以用来学习在一系列属性上概括并生成的解决方案的解决方案运算符,并比通用求解器快得多。我们可以公开可用的数据集可以使用并扩展,以验证这些模型在不同条件下的鲁棒性。
translated by 谷歌翻译
新兴的元应用需要人类手的可靠,准确和逼真的复制品,以便在物理世界中进行复杂的操作。虽然真实的人手代表了骨骼,肌肉,肌腱和皮肤之间最复杂的协调之一,但最先进的技术一致专注于仅建模手的骨架。在本文中,我们提出了Nimble,这是一种新型的参数手模型,其中包括缺少的密钥组件,将3D手模型带入了新的现实主义水平。我们首先在最近的磁共振成像手(MRI手)数据集上注释肌肉,骨骼和皮肤,然后在数据集中的单个姿势和受试者上注册一个体积模板手。敏捷由20个骨头组成,作为三角形网格,7个肌肉群作为四面体网眼和一个皮肤网。通过迭代形状的注册和参数学习,它进一步产生形状的混合形状,姿势混合形状和关节回归器。我们证明将敏捷性应用于建模,渲染和视觉推理任务。通过强制执行内部骨骼和肌肉以符合解剖学和运动学规则,Nimble可以使3D手动画为前所未有的现实主义。为了建模皮肤的外观,我们进一步构建了一个光度法,以获取高质量的纹理和正常地图,以模型皱纹和棕榈印刷。最后,敏捷还通过合成丰富的数据或直接作为推理网络中的可区分层来使基于学习的手姿势和形状估计受益。
translated by 谷歌翻译
从设计架构材料到跨尺度的机械行为,计算建模是固体力学中的关键工具。最近,人们对使用机器学习来降低基于物理的模拟的计算成本越来越兴趣。值得注意的是,尽管依赖图神经网络(GNN)的机器学习方法在学习机制方面表现出了成功,但GNN的性能尚未针对无数的固体力学问题进行研究。在这项工作中,我们研究了GNN预测机械驱动的紧急行为的基本方面的能力:柱的几何结构与其弯曲方向之间的联系。为此,我们介绍了不对称屈曲柱(ABC)数据集,该数据集由三个不对称和异质列的几个子数据集组成不稳定。由于局部几何形状,实现标准卷积神经网络元模型所需的“图像样”数据表示不是理想的,因此激发了GNN的使用。除了研究GNN模型体系结构外,我们还研究了不同输入数据表示方法,数据增强和将多个模型结合在一起的效果。虽然我们能够获得良好的结果,但我们还表明,预测基于固体力学的新兴行为是非平凡的。因为我们的模型实施和数据集都在开源许可下分配,所以我们希望未来的研究人员可以在我们的工作基础上建立创建增强的机械师特定机器的机器学习管道,以捕获复杂的几何结构的行为。
translated by 谷歌翻译
基于治疗期间的单投影图像的器官形状重建具有广泛的临床范围,例如在图像引导放射治疗和手术指导中。我们提出了一种图形卷积网络,该网络实现了用于单视点2D投影图像的3D器官网格的可变形登记。该框架使得能够同时训练两种类型的变换:从2D投影图像到位移图,以及从采样的每周顶点特征到满足网格结构的几何约束的3D位移。假设申请放射治疗,验证了2D / 3D可变形的登记性能,用于尚未瞄准迄今为止,即肝脏,胃,十二指肠和肾脏以及胰腺癌的多个腹部器官。实验结果表明,考虑多个器官之间的关系的形状预测可用于预测临床上可接受的准确性的数字重建射线照片的呼吸运动和变形。
translated by 谷歌翻译
在医学图像分析中,皮质区域的自动分割一直是长期以来的挑战。皮质的复杂几何形状通常表示为多边形网格,其分割可以通过基于图的学​​习方法来解决。当对受试者之间的皮质网格对齐时,当前方法会产生明显较差的分割结果,从而限制了它们处理多域数据的能力。在本文中,我们研究了E(n) - 等级图神经网络(EGNN)的实用性,将其性能与普通图神经网络(GNNS)进行了比较。我们的评估表明,由于GNN的能力利用全球坐标系的存在,GNNS在对齐网格上的表现要优于对齐网格。在未对准的网格上,普通GNN的性能大大下降,而e(n) - 等级消息传递通过相同的分割结果。也可以通过在重新调整数据(全球坐标系中的共注册网格)上使用普通GNN来获得最佳结果。
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
\ emph {几何深度学习}(GDL)的最新进展显示了其提供强大数据驱动模型的潜力。这提供了探索从图形数据中\ emph {部分微分方程}(PDES)控制的物理系统的新方法的动力。然而,尽管做出了努力和最近的成就,但几个研究方向仍未开发,进步仍然远非满足现实现象的身体要求。主要障碍之一是缺乏基准数据集和常见的物理评估协议。在本文中,我们提出了一个2-D Graph-Mesh数据集,以研究High Reynolds制度的机翼上的气流(从$ 10^6 $及以后)。我们还对翼型上的应力力引入指标,以评估重要的物理量的GDL模型。此外,我们提供广泛的GDL基准。
translated by 谷歌翻译
对于许多工程应用,例如实时模拟或控制,潜在的非线性问题的传统解决方案技术通常是过于计算的。在这项工作中,我们提出了一种高效的深度学习代理框架,能够预测负载下的超弹性体的响应。代理模型采用特殊的卷积神经网络架构,所谓的U-Net的形式,其具有用有限元方法获得的力 - 位移数据训练。我们提出了框架的确定性和概率版本,并研究了三个基准问题。特别是,我们检查最大可能性和变分贝叶斯推论配方的能力,以评估解决方案的置信区间。
translated by 谷歌翻译
与纺织品(例如辅助敷料)的物理互动依赖于先进的灵巧能力。拉扯和拉伸时纺织行为的潜在复杂性是由于纱线材料特性和纺织品构造技术所致。如今,还没有采用和注释的数据集评估各种交互或属性识别方法。影响这种相互作用的一种重要特性是材料弹性是由纱线材料和构造技术引起的:这两个是交织在一起的,如果不知道A-Priori,几乎无法通过在机器人平台上使用常见的传感来识别。我们介绍了弹性环境(EC),该概念集成了影响弹性行为的各种属性,以使其与纺织品进行更有效的物理互动。 EC的定义依赖于纺织工程中常用的压力/应变曲线,我们为机器人应用重新制定了压力/应变曲线。我们使用图形神经网络(GNN)使用EC来学习纺织品的通用弹性行为。此外,我们探讨了EC对非线性现实世界弹性行为的准确力量建模的影响,从而强调了当前机器人设置以感知纺织特性的挑战。
translated by 谷歌翻译
Wind turbine wake modelling is of crucial importance to accurate resource assessment, to layout optimisation, and to the operational control of wind farms. This work proposes a surrogate model for the representation of wind turbine wakes based on a state-of-the-art graph representation learning method termed a graph neural network. The proposed end-to-end deep learning model operates directly on unstructured meshes and has been validated against high-fidelity data, demonstrating its ability to rapidly make accurate 3D flow field predictions for various inlet conditions and turbine yaw angles. The specific graph neural network model employed here is shown to generalise well to unseen data and is less sensitive to over-smoothing compared to common graph neural networks. A case study based upon a real world wind farm further demonstrates the capability of the proposed approach to predict farm scale power generation. Moreover, the proposed graph neural network framework is flexible and highly generic and as formulated here can be applied to any steady state computational fluid dynamics simulations on unstructured meshes.
translated by 谷歌翻译
Simulating rigid collisions among arbitrary shapes is notoriously difficult due to complex geometry and the strong non-linearity of the interactions. While graph neural network (GNN)-based models are effective at learning to simulate complex physical dynamics, such as fluids, cloth and articulated bodies, they have been less effective and efficient on rigid-body physics, except with very simple shapes. Existing methods that model collisions through the meshes' nodes are often inaccurate because they struggle when collisions occur on faces far from nodes. Alternative approaches that represent the geometry densely with many particles are prohibitively expensive for complex shapes. Here we introduce the Face Interaction Graph Network (FIGNet) which extends beyond GNN-based methods, and computes interactions between mesh faces, rather than nodes. Compared to learned node- and particle-based methods, FIGNet is around 4x more accurate in simulating complex shape interactions, while also 8x more computationally efficient on sparse, rigid meshes. Moreover, FIGNet can learn frictional dynamics directly from real-world data, and can be more accurate than analytical solvers given modest amounts of training data. FIGNet represents a key step forward in one of the few remaining physical domains which have seen little competition from learned simulators, and offers allied fields such as robotics, graphics and mechanical design a new tool for simulation and model-based planning.
translated by 谷歌翻译
经典可塑性模型的历史依赖性行为通常是由现象学定律演变而来的内部变量驱动的。解释这些内部变量如何代表变形的历史,缺乏直接测量这些内部变量进行校准和验证的困难,以及这些现象学定律的弱物理基础一直被批评为创建现实模型的障碍。在这项工作中,将图形数据(例如有限元解决方案)上的几何机器学习用作建立非线性尺寸还原技术和可塑性模型之间的联系的手段。基于几何学习的编码可以将丰富的时间历史数据嵌入到低维的欧几里得空间上,以便可以在嵌入式特征空间中预测塑性变形的演变。然后,相应的解码器可以将这些低维内变量转换回加权图,从而可以观察和分析塑性变形的主导拓扑特征。
translated by 谷歌翻译
We propose a method that leverages graph neural networks, multi-level message passing, and unsupervised training to enable real-time prediction of realistic clothing dynamics. Whereas existing methods based on linear blend skinning must be trained for specific garments, our method is agnostic to body shape and applies to tight-fitting garments as well as loose, free-flowing clothing. Our method furthermore handles changes in topology (e.g., garments with buttons or zippers) and material properties at inference time. As one key contribution, we propose a hierarchical message-passing scheme that efficiently propagates stiff stretching modes while preserving local detail. We empirically show that our method outperforms strong baselines quantitatively and that its results are perceived as more realistic than state-of-the-art methods.
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
本文介绍了一种新型的基于学习的服装变形方法,为各种动画中的各种形状佩戴的服装产生丰富和合理的详细变形。与现有的基于学习的方法相比,需要为不同的服装拓扑或姿势进行众多培训的型号,并且无法轻易实现丰富的细节,我们使用统一的框架有效且容易地产生高保真变形。为了解决预测受多源属性影响的变形的具有挑战性问题,我们提出了三种策略从新颖的角度来看。具体而言,我们首先发现衣服和身体之间的配合对折叠程度具有重要影响。然后,我们设计了一个属性解析器,以生成详细信息感知的编码并将它们注入图形神经网络,从而增强了各种属性下的细节的辨别。此外,为了实现更好的收敛并避免过度平稳变形,我们提出了输出重建以减轻学习任务的复杂性。实验结果表明,我们所提出的变形方法在泛化能力和细节质量方面实现了更好的现有方法。
translated by 谷歌翻译
无创医学神经影像学已经对大脑连通性产生了许多发现。开发了几种实质技术绘制形态,结构和功能性脑连接性,以创建人脑中神经元活动的全面路线图。依靠其非欧国人数据类型,图形神经网络(GNN)提供了一种学习深图结构的巧妙方法,并且它正在迅速成为最先进的方法,从而导致各种网络神经科学任务的性能增强。在这里,我们回顾了当前基于GNN的方法,突出了它们在与脑图有关的几种应用中使用的方式,例如缺失的脑图合成和疾病分类。最后,我们通过绘制了通往网络神经科学领域中更好地应用GNN模型在神经系统障碍诊断和人群图整合中的路径。我们工作中引用的论文列表可在https://github.com/basiralab/gnns-inns-intwork-neuroscience上找到。
translated by 谷歌翻译