We propose a method that leverages graph neural networks, multi-level message passing, and unsupervised training to enable real-time prediction of realistic clothing dynamics. Whereas existing methods based on linear blend skinning must be trained for specific garments, our method is agnostic to body shape and applies to tight-fitting garments as well as loose, free-flowing clothing. Our method furthermore handles changes in topology (e.g., garments with buttons or zippers) and material properties at inference time. As one key contribution, we propose a hierarchical message-passing scheme that efficiently propagates stiff stretching modes while preserving local detail. We empirically show that our method outperforms strong baselines quantitatively and that its results are perceived as more realistic than state-of-the-art methods.
translated by 谷歌翻译
Simulating rigid collisions among arbitrary shapes is notoriously difficult due to complex geometry and the strong non-linearity of the interactions. While graph neural network (GNN)-based models are effective at learning to simulate complex physical dynamics, such as fluids, cloth and articulated bodies, they have been less effective and efficient on rigid-body physics, except with very simple shapes. Existing methods that model collisions through the meshes' nodes are often inaccurate because they struggle when collisions occur on faces far from nodes. Alternative approaches that represent the geometry densely with many particles are prohibitively expensive for complex shapes. Here we introduce the Face Interaction Graph Network (FIGNet) which extends beyond GNN-based methods, and computes interactions between mesh faces, rather than nodes. Compared to learned node- and particle-based methods, FIGNet is around 4x more accurate in simulating complex shape interactions, while also 8x more computationally efficient on sparse, rigid meshes. Moreover, FIGNet can learn frictional dynamics directly from real-world data, and can be more accurate than analytical solvers given modest amounts of training data. FIGNet represents a key step forward in one of the few remaining physical domains which have seen little competition from learned simulators, and offers allied fields such as robotics, graphics and mechanical design a new tool for simulation and model-based planning.
translated by 谷歌翻译
动画字符上的现实动态服装具有许多AR/VR应用程序。在创作这种动态服装几何形状仍然是一项具有挑战性的任务时,数据驱动的模拟提供了一个有吸引力的替代方案,尤其是如果可以简单地使用基础字符的运动来控制它。在这项工作中,我们专注于动态3D服装,尤其是对于松散的服装。在数据驱动的设置中,我们首先学习了合理服装几何形状的生成空间。然后,我们学会了对该空间的映射,以捕获运动依赖的动态变形,该变形在服装的先前状态以及相对于基础体的相对位置为条件。从技术上讲,我们通过在服装的规范状态下预测富含框架依赖的皮肤重量的服装状态下的人均局部位移来对服装动力学进行建模,从而将服装带入全球空间。我们通过预测剩余的局部位移来解决所有剩余的人均碰撞。所得的服装几何形状被用作历史记录,以实现迭代推出预测。我们证明了对看不见的身体形状和运动输入的合理概括,并在多个最新的替代方案中显示出改进。
translated by 谷歌翻译
本文介绍了一种新型的基于学习的服装变形方法,为各种动画中的各种形状佩戴的服装产生丰富和合理的详细变形。与现有的基于学习的方法相比,需要为不同的服装拓扑或姿势进行众多培训的型号,并且无法轻易实现丰富的细节,我们使用统一的框架有效且容易地产生高保真变形。为了解决预测受多源属性影响的变形的具有挑战性问题,我们提出了三种策略从新颖的角度来看。具体而言,我们首先发现衣服和身体之间的配合对折叠程度具有重要影响。然后,我们设计了一个属性解析器,以生成详细信息感知的编码并将它们注入图形神经网络,从而增强了各种属性下的细节的辨别。此外,为了实现更好的收敛并避免过度平稳变形,我们提出了输出重建以减轻学习任务的复杂性。实验结果表明,我们所提出的变形方法在泛化能力和细节质量方面实现了更好的现有方法。
translated by 谷歌翻译
Recent approaches to drape garments quickly over arbitrary human bodies leverage self-supervision to eliminate the need for large training sets. However, they are designed to train one network per clothing item, which severely limits their generalization abilities. In our work, we rely on self-supervision to train a single network to drape multiple garments. This is achieved by predicting a 3D deformation field conditioned on the latent codes of a generative network, which models garments as unsigned distance fields. Our pipeline can generate and drape previously unseen garments of any topology, whose shape can be edited by manipulating their latent codes. Being fully differentiable, our formulation makes it possible to recover accurate 3D models of garments from partial observations -- images or 3D scans -- via gradient descent. Our code will be made publicly available.
translated by 谷歌翻译
我们提出了一种新的基于网格的学习方法(N-Cloth),适用于合理的3D布变形预测。我们的方法是通用的,可以处理具有任意拓扑的三角网格表示的布料或障碍物。我们使用Graph卷积将布料和对象网格转换为潜在空间以减少网格空间中的非线性。我们的网络可以基于初始布网格模板和目标障碍物网的状态来预测目标3D布网格变形。我们的方法可以处理复杂的布料网格,最高可达100美元的k三角形和场景,具有与SMPL人,非SMPL人或刚体相对应的各种对象。在实践中,我们的方法展示了连续输入框架之间的良好时间相干性,并且可用于在NVIDIA GeForce RTX 3090 GPU上以30-45美元的$ 30-45 $ FPS产生合理的布料模拟。我们突出了以前基于学习的方法和基于物理的布料模拟器的好处。
translated by 谷歌翻译
Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework-which we term "Graph Network-based Simulators" (GNS)-represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the training data with noise. Our GNS framework advances the state-of-the-art in learned physical simulation, and holds promise for solving a wide range of complex forward and inverse problems.
translated by 谷歌翻译
机器人中的一个重要挑战是了解机器人与由粒状材料组成的可变形地形之间的相互作用。颗粒状流量及其与刚体的互动仍然造成了几个开放的问题。有希望的方向,用于准确,且有效的建模使用的是使用连续体方法。此外,实时物理建模的新方向是利用深度学习。该研究推进了用于对刚性体驱动颗粒流建模的机器学习方法,用于应用于地面工业机器以及空间机器人(重力的效果是一个重要因素的地方)。特别是,该研究考虑了子空间机器学习仿真方法的开发。要生成培训数据集,我们利用我们的高保真连续体方法,材料点法(MPM)。主要成分分析(PCA)用于降低数据的维度。我们表明我们的高维数据的前几个主要组成部分几乎保持了数据的整个方差。培训图形网络模拟器(GNS)以学习底层子空间动态。然后,学习的GNS能够以良好的准确度预测颗粒位置和交互力。更重要的是,PCA在训练和卷展栏中显着提高了GNS的时间和记忆效率。这使得GNS能够使用具有中等VRAM的单个桌面GPU进行培训。这也使GNS实时在大规模3D物理配置(比我们的连续方法快700倍)。
translated by 谷歌翻译
Learning physical systems on unstructured meshes by flat Graph neural networks (GNNs) faces the challenge of modeling the long-range interactions due to the scaling complexity w.r.t. the number of nodes, limiting the generalization under mesh refinement. On regular grids, the convolutional neural networks (CNNs) with a U-net structure can resolve this challenge by efficient stride, pooling, and upsampling operations. Nonetheless, these tools are much less developed for graph neural networks (GNNs), especially when GNNs are employed for learning large-scale mesh-based physics. The challenges arise from the highly irregular meshes and the lack of effective ways to construct the multi-level structure without losing connectivity. Inspired by the bipartite graph determination algorithm, we introduce Bi-Stride Multi-Scale Graph Neural Network (BSMS-GNN) by proposing \textit{bi-stride} as a simple pooling strategy for building the multi-level GNN. \textit{Bi-stride} pools nodes by striding every other BFS frontier; it 1) works robustly on any challenging mesh in the wild, 2) avoids using a mesh generator at coarser levels, 3) avoids the spatial proximity for building coarser levels, and 4) uses non-parametrized aggregating/returning instead of MLPs during pooling and unpooling. Experiments show that our framework significantly outperforms the state-of-the-art method's computational efficiency in representative physics-based simulation cases.
translated by 谷歌翻译
Interacting systems are prevalent in nature, from dynamical systems in physics to complex societal dynamics. The interplay of components can give rise to complex behavior, which can often be explained using a simple model of the system's constituent parts. In this work, we introduce the neural relational inference (NRI) model: an unsupervised model that learns to infer interactions while simultaneously learning the dynamics purely from observational data. Our model takes the form of a variational auto-encoder, in which the latent code represents the underlying interaction graph and the reconstruction is based on graph neural networks. In experiments on simulated physical systems, we show that our NRI model can accurately recover ground-truth interactions in an unsupervised manner. We further demonstrate that we can find an interpretable structure and predict complex dynamics in real motion capture and sports tracking data.
translated by 谷歌翻译
尽管最近取得了成功,但基于学习的深度学习方法用于预测身体运动下的3D服装变形,却遇到了服装与身体之间的互穿问题。为了解决这个问题,我们提出了一种新颖的碰撞处理神经网络层,称为排斥力单位(REFU)。根据基础主体的签名距离函数(SDF)和当前的服装顶点位置,Repu预测了将任何互穿顶点推向无冲突的配置,同时保留精细的几何学细节,这些偏移量将任何互穿顶点推向无冲突的配置。我们表明,RECU可以通过可训练的参数进行区分,并且可以集成到预测3D服装变形的不同网络骨架中。我们的实验表明,与基于碰撞损失或后处理优化的先前方法相比,相比,RECU可显着减少身体与服装之间的碰撞数量,并更好地保留几何细节。
translated by 谷歌翻译
社会VR,绩效捕获和虚拟试验的领域通常面临着忠实地在虚拟世界中重现真正的服装。一项关键的任务是由于织物特性,物理力和与身体接触而导致的固有服装形状不构成形状。我们建议使用一种逼真而紧凑的服装描述来促进固有的服装形状估计。另一个主要挑战是该域中的形状和设计多样性。 3D服装深度学习的最常见方法是为单个服装或服装类型建立专门的模型。我们认为,为各种服装设计建立统一的模型具有对新型服装类型的概括的好处,因此涵盖了比单个模型更大的设计领域。我们介绍了Neuraltailor,这是一种基于点级的新型架构,以可变的基数为基础回归,并将其应用于从3D点重建2D服装缝制模式的任务,可以使用服装模型。我们的实验表明,NeuralTailor成功地重建了缝纫模式,并将其推广到训练过程中未见模式拓扑的服装类型。
translated by 谷歌翻译
离散脱位动力学(DDD)是一种广泛使用的计算方法,用于研究中尺度上的可塑性,将位错线的运动与晶体材料的宏观响应联系起来。但是,DDD模拟的计算成本仍然是限制其适用性范围的瓶颈。在这里,我们介绍了一个新的DDD-GNN框架,其中昂贵的位错运动的时间整合完全被培训的DDD轨迹训练的图神经网络(GNN)模型代替。作为第一个应用,我们在简单但相关的位错线模型上滑行障碍森林的简单但相关的模型,证明了我们方法的可行性和潜力。我们表明,DDD-GNN模型是稳定的,并且对一系列紧张的速率和障碍物密度的重现,无需在时间整合过程中明确计算淋巴结或脱位迁移率。我们的方法开放了新的有前途的途径,以加速DDD模拟并结合更复杂的脱位运动行为。
translated by 谷歌翻译
Lagrangian和Hamiltonian神经网络(分别是LNN和HNN)编码强诱导偏见,使它们能够显着优于其他物理系统模型。但是,到目前为止,这些模型大多仅限于简单的系统,例如摆和弹簧或单个刚体的身体,例如陀螺仪或刚性转子。在这里,我们提出了一个拉格朗日图神经网络(LGNN),可以通过利用其拓扑来学习刚体的动态。我们通过学习以刚体为刚体的棒的绳索,链条和桁架的动力学来证明LGNN的性能。 LGNN还表现出普遍性 - 在链条上训练了一些细分市场的LGNN具有概括性,以模拟具有大量链接和任意链路长度的链条。我们还表明,LGNN可以模拟看不见的混合动力系统,包括尚未接受过培训的酒吧和链条。具体而言,我们表明LGNN可用于建模复杂的现实世界结构的动力学,例如紧张结构的稳定性。最后,我们讨论了质量矩阵的非对角性性质及其在复杂系统中概括的能力。
translated by 谷歌翻译
人类将他们的手和身体一起移动,沟通和解决任务。捕获和复制此类协调活动对于虚拟字符至关重要,以实际行为行为。令人惊讶的是,大多数方法分别对待身体和手的3D建模和跟踪。在这里,我们制定了一种手和身体的型号,并将其与全身4D序列合理。当扫描或捕获3D中的全身时,手很小,通常是部分闭塞,使其形状和难以恢复。为了应对低分辨率,闭塞和噪音,我们开发了一种名为Mano(具有铰接和非刚性变形的手模型)的新型号。曼诺从大约1000个高分辨率的3D扫描中学到了31个受试者的手中的大约一定的手。该模型是逼真的,低维,捕获非刚性形状的姿势变化,与标准图形封装兼容,可以适合任何人类的手。 Mano提供从手姿势的紧凑型映射,以构成混合形状校正和姿势协同效应的线性歧管。我们将Mano附加到标准参数化3D体形状模型(SMPL),导致完全铰接的身体和手部模型(SMPL + H)。我们通过用4D扫描仪捕获的综合体,自然,自然,自然的受试者的活动来说明SMPL + H.该配件完全自动,并导致全身型号,自然地移动详细的手动运动和在全身性能捕获之前未见的现实主义。模型和数据在我们的网站上自由用于研究目的(http://mano.is.tue.mpg.de)。
translated by 谷歌翻译
The abundance of data has given machine learning considerable momentum in natural sciences and engineering, though modeling of physical processes is often difficult. A particularly tough problem is the efficient representation of geometric boundaries. Triangularized geometric boundaries are well understood and ubiquitous in engineering applications. However, it is notoriously difficult to integrate them into machine learning approaches due to their heterogeneity with respect to size and orientation. In this work, we introduce an effective theory to model particle-boundary interactions, which leads to our new Boundary Graph Neural Networks (BGNNs) that dynamically modify graph structures to obey boundary conditions. The new BGNNs are tested on complex 3D granular flow processes of hoppers, rotating drums and mixers, which are all standard components of modern industrial machinery but still have complicated geometry. BGNNs are evaluated in terms of computational efficiency as well as prediction accuracy of particle flows and mixing entropies. BGNNs are able to accurately reproduce 3D granular flows within simulation uncertainties over hundreds of thousands of simulation timesteps. Most notably, in our experiments, particles stay within the geometric objects without using handcrafted conditions or restrictions.
translated by 谷歌翻译
虚拟网格是在线通信的未来。服装是一个人身份和自我表达的重要组成部分。然而,目前,在培训逼真的布置动画的远程介绍模型的必需分子和准确性中,目前无法使用注册衣服的地面真相数据。在这里,我们提出了一条端到端的管道,用于建造可驱动的服装代表。我们方法的核心是一种多视图图案的布跟踪算法,能够以高精度捕获变形。我们进一步依靠跟踪方法生产的高质量数据来构建服装头像:一件衣服的表达和完全驱动的几何模型。可以使用一组稀疏的视图来对所得模型进行动画,并产生高度逼真的重建,这些重建忠于驾驶信号。我们证明了管道对现实的虚拟电视应用程序的功效,在该应用程序中,从两种视图中重建了衣服,并且用户可以根据自己的意愿进行选择和交换服装设计。此外,当仅通过身体姿势驱动时,我们表现出一个具有挑战性的场景,我们可驾驶的服装Avatar能够生产出比最先进的面包质量明显更高的逼真的布几何形状。
translated by 谷歌翻译
模块化机器人可以在每天重新排列到新设计中,通过为每项新任务形成定制机器人来处理各种各样的任务。但是,重新配置的机制是不够的:每个设计还需要自己独特的控制策略。人们可以从头开始为每个新设计制作一个政策,但这种方法不可扩展,特别是给出了甚至一小组模块可以生成的大量设计。相反,我们创建了一个模块化策略框架,策略结构在硬件排列上有调节,并仅使用一个培训过程来创建控制各种设计的策略。我们的方法利用了模块化机器人的运动学可以表示为设计图,其中节点作为模块和边缘作为它们之间的连接。给定机器人,它的设计图用于创建具有相同结构的策略图,其中每个节点包含一个深神经网络,以及通过共享参数的相同类型共享知识的模块(例如,Hexapod上的所有腿都相同网络参数)。我们开发了一种基于模型的强化学习算法,交织模型学习和轨迹优化,以培训策略。我们展示了模块化政策推广到培训期间没有看到的大量设计,没有任何额外的学习。最后,我们展示了与模拟和真实机器人一起控制各种设计的政策。
translated by 谷歌翻译
物理系统通常表示为粒子的组合,即控制系统动力学的个体动力学。但是,传统方法需要了解几个抽象数量的知识,例如推断这些颗粒动力学的能量或力量。在这里,我们提出了一个框架,即拉格朗日图神经网络(LGNN),它提供了强烈的感应偏见,可以直接从轨迹中学习基于粒子系统的拉格朗日。我们在具有约束和阻力的挑战系统上测试我们的方法 - LGNN优于诸如前馈拉格朗日神经网络(LNN)等基线,其性能提高。我们还通过模拟系统模拟系统的两个数量级比受过训练的一个数量级和混合系统大的数量级来显示系统的零弹性通用性,这些数量级是一个独特的功能。与LNN相比,LGNN的图形体系结构显着简化了学习,其性能在少量少量数据上的性能高25倍。最后,我们显示了LGNN的解释性,该解释性直接提供了对模型学到的阻力和约束力的物理见解。因此,LGNN可以为理解物理系统的动力学提供纯粹的填充,这纯粹是从可观察的数量中。
translated by 谷歌翻译
在学识表的迅速推进的地区,几乎所有方法都训练了从输入状态直接预测未来状态的前进模型。然而,许多传统的仿真引擎使用基于约束的方法而不是直接预测。这里我们提出了一种基于约束的学习仿真的框架,其中标量约束函数被实现为神经网络,并且将来的预测被计算为在这些学习的约束下的优化问题的解决方案。我们使用图形神经网络作为约束函数和梯度下降作为约束求解器来实现我们的方法。架构可以通过标准的backprojagation培训。我们在各种具有挑战性的物理领域中测试模型,包括模拟绳索,弹跳球,碰撞不规则形状和飞溅液。我们的模型可实现更好或更具可比性的性能,以获得最佳学习的模拟器。我们模型的一个关键优势是能够在测试时间概括到更多求解器迭代,以提高模拟精度。我们还展示了如何在测试时间内添加手工制定的约束,以满足培训数据中不存在的目标,这是不可能的前进方法。我们的约束框架适用于使用前进学习模拟器的任何设置,并演示了学习的模拟器如何利用额外的归纳偏差以及来自数值方法领域的技术。
translated by 谷歌翻译