在这项工作中,我们介绍了配备有明确性能的第一个初始化方法,该方法适用于姿势图同时定位和映射(SLAM)和旋转平均(RA)问题。 SLAM和旋转平均通常正义为大规模的非渗透点估计问题,具有许多糟糕的本地最小值,可以捕获通常应用的平滑优化方法来解决它们;因此,标准SLAM和RA算法的性能至关重要取决于用于初始化该本地搜索的估计的质量。虽然在文献中出现了SLAM和RA的许多初始化方法,但通常可以获得纯粹的启发式近似值,这使得难以确定是否(或在什么情况下)这些技术可以可靠地部署这些技术。相比之下,在这项工作中,我们研究通过光谱松弛镜头初始化的问题。具体而言,我们推出了SLAM和RA的简单谱弛豫,其形式使我们能够利用经典的线性代数技术(特征向量扰动界限)来控制从我们的光谱估计到(未知)地基实际和该距离作为测量噪声的函数的估计问题的全局最小化器。我们的结果揭示了测量网络在控制估计精度下播放的光谱图 - 理论性能的关键作用;此外,作为我们分析的副产物,我们在估计误差上获得了最大似然估计的估计误差,这可能具有独立兴趣。最后,我们在实验上展示了我们的光谱估计器在实践中非常有效,与现有的最先进技术相比,在较低的计算成本下生产可比或优异质量的初始化。
translated by 谷歌翻译
Outier-bubust估计是一个基本问题,已由统计学家和从业人员进行了广泛的研究。在过去的几年中,整个研究领域的融合都倾向于“算法稳定统计”,该统计数据的重点是开发可拖动的异常体 - 固定技术来解决高维估计问题。尽管存在这种融合,但跨领域的研究工作主要彼此断开。本文桥接了有关可认证的异常抗衡器估计的最新工作,该估计是机器人技术和计算机视觉中的几何感知,并在健壮的统计数据中并行工作。特别是,我们适应并扩展了最新结果对可靠的线性回归(适用于<< 50%异常值的低外壳案例)和列表可解码的回归(适用于>> 50%异常值的高淘汰案例)在机器人和视觉中通常发现的设置,其中(i)变量(例如旋转,姿势)属于非convex域,(ii)测量值是矢量值,并且(iii)未知的异常值是先验的。这里的重点是绩效保证:我们没有提出新算法,而是为投入测量提供条件,在该输入测量值下,保证现代估计算法可以在存在异常值的情况下恢复接近地面真相的估计值。这些条件是我们所谓的“估计合同”。除了现有结果的拟议扩展外,我们认为本文的主要贡献是(i)通过指出共同点和差异来统一平行的研究行,(ii)在介绍先进材料(例如,证明总和证明)中的统一行为。对从业者的可访问和独立的演讲,(iii)指出一些即时的机会和开放问题,以发出异常的几何感知。
translated by 谷歌翻译
组同步是指从嘈杂的成对测量中估计组元素的集合。这种非核解问题来自包括计算机视觉,机器人和冷冻电子显微镜的许多科学领域的大量关注。在本文中,我们专注于在不完全测量下的一般添加剂噪声模型的正交组同步问题,这比通常考虑的完整测量设置更多。从最优条件的透视提供正交组同步问题的特征以及投影梯度上升方法的固定点,其也称为广义功率方法(GPM)。值得注意的是,即使没有生成模型,这些结果仍然存在。同时,我们导出了对正交组同步问题的本地错误绑定属性,这对于不同算法的融合速率分析非常有用,并且可以是独立的兴趣。最后,我们在基于已建立的本地误差绑定属性的一般添加剂噪声模型下将GPM的线性收敛结果证明了GPM到全局最大化器。我们的理论会聚结果在若干确定性条件下持有,其可以覆盖具有对抗性噪声的某些情况,并且作为我们专门化以确定ERD \“OS-R”enyi测量图和高斯噪声的示例。
translated by 谷歌翻译
在许多应用程序(例如运动锦标赛或推荐系统)中,我们可以使用该数据,包括一组$ n $项目(或玩家)之间的成对比较。目的是使用这些数据来推断每个项目和/或其排名的潜在强度。此问题的现有结果主要集中在由单个比较图$ g $组成的设置上。但是,存在成对比较数据随时间发展的场景(例如体育比赛)。这种动态设置的理论结果相对有限,是本文的重点。我们研究\ emph {翻译同步}问题的扩展,到动态设置。在此设置中,我们给出了一系列比较图$(g_t)_ {t \ in \ mathcal {t}} $,其中$ \ nathcal {t} \ subset [0,1] $是代表时间的网格域,对于每个项目$ i $和time $ t \ in \ mathcal {t} $,有一个关联的未知强度参数$ z^*_ {t,i} \ in \ mathbb {r} $。我们的目标是恢复,以$ t \在\ Mathcal {t} $中,强度向量$ z^*_ t =(z^*_ {t,1},\ cdots,z^*_ {t,n}) $从$ z^*_ {t,i} -z^*_ {t,j} $的噪声测量值中,其中$ \ {i,j \} $是$ g_t $中的边缘。假设$ z^*_ t $在$ t $中顺利地演变,我们提出了两个估计器 - 一个基于平滑度的最小二乘方法,另一个基于对合适平滑度操作员低频本质空间的投影。对于两个估计器,我们为$ \ ell_2 $估计错误提供有限的样本范围,假设$ g_t $已连接到\ mathcal {t} $中的所有$ t \网格尺寸$ | \ MATHCAL {T} | $。我们通过有关合成和真实数据的实验来补充理论发现。
translated by 谷歌翻译
现代状态估计通常被表达为优化问题,并使用有效的本地搜索方法解决。这些方法最能保证与本地最小值的融合,但是在某些情况下,全球最优性也可以得到认证。尽管此类全球最佳证书已经为3D姿势格言优化确定了,但是对于基于3D地标的SLAM问题,尚未确定细节,其中估计的状态包括机器人姿势和地图地标。在本文中,我们通过使用图理论方法来解决这一差距,将基于里程碑的SLAM的子问题投入到一种形式,该形式产生了足够的全球最优状态。存在计算这些子问题的最佳证书的有效方法,但首先需要构建大型数据矩阵。我们表明,该矩阵可以以复杂性构建,该复杂性在地标数量中保持线性,并且不超过一个局部求解器的最新计算复杂性。最后,我们证明了证书对基于模拟和现实世界标记的大满贯问题的功效。
translated by 谷歌翻译
我们提出了一种凸锥程序,可推断随机点产品图(RDPG)的潜在概率矩阵。优化问题最大化Bernoulli最大似然函数,增加核规范正则化术语。双重问题具有特别良好的形式,与众所周知的SemideFinite程序放松MaxCut问题有关。使用原始双功率条件,我们绑定了原始和双解决方案的条目和等级。此外,我们在轻微的技术假设下绑定了最佳目标值并证明了略微修改模型的概率估计的渐近一致性。我们对合成RDPG的实验不仅恢复了自然集群,而且还揭示了原始数据的下面的低维几何形状。我们还证明该方法在空手道俱乐部图表和合成美国参议图中恢复潜在结构,并且可以扩展到最多几百个节点的图表。
translated by 谷歌翻译
我们考虑最大程度地减少两次不同的可差异,$ l $ -smooth和$ \ mu $ -stronglongly凸面目标$ \ phi $ phi $ a $ n \ times n $ n $阳性阳性半finite $ m \ succeq0 $,在假设是最小化的假设$ m^{\ star} $具有低等级$ r^{\ star} \ ll n $。遵循burer- monteiro方法,我们相反,在因子矩阵$ x $ size $ n \ times r $的因素矩阵$ x $上最小化nonconvex objection $ f(x)= \ phi(xx^{t})$。这实际上将变量的数量从$ o(n^{2})$减少到$ O(n)$的少量,并且免费实施正面的半弱点,但要付出原始问题的均匀性。在本文中,我们证明,如果搜索等级$ r \ ge r^{\ star} $被相对于真等级$ r^{\ star} $的常数因子过度参数化,则如$ r> \ in frac {1} {4}(l/\ mu-1)^{2} r^{\ star} $,尽管非概念性,但保证本地优化可以从任何初始点转换为全局最佳。这显着改善了先前的$ r \ ge n $的过度参数化阈值,如果允许$ \ phi $是非平滑和/或非额外凸的,众所周知,这将是尖锐的,但会增加变量的数量到$ o(n^{2})$。相反,没有排名过度参数化,我们证明只有$ \ phi $几乎完美地条件,并且条件数量为$ l/\ mu <3 $,我们才能证明这种全局保证是可能的。因此,我们得出的结论是,少量的过度参数化可能会导致非凸室的理论保证得到很大的改善 - 蒙蒂罗分解。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
We consider the nonlinear inverse problem of learning a transition operator $\mathbf{A}$ from partial observations at different times, in particular from sparse observations of entries of its powers $\mathbf{A},\mathbf{A}^2,\cdots,\mathbf{A}^{T}$. This Spatio-Temporal Transition Operator Recovery problem is motivated by the recent interest in learning time-varying graph signals that are driven by graph operators depending on the underlying graph topology. We address the nonlinearity of the problem by embedding it into a higher-dimensional space of suitable block-Hankel matrices, where it becomes a low-rank matrix completion problem, even if $\mathbf{A}$ is of full rank. For both a uniform and an adaptive random space-time sampling model, we quantify the recoverability of the transition operator via suitable measures of incoherence of these block-Hankel embedding matrices. For graph transition operators these measures of incoherence depend on the interplay between the dynamics and the graph topology. We develop a suitable non-convex iterative reweighted least squares (IRLS) algorithm, establish its quadratic local convergence, and show that, in optimal scenarios, no more than $\mathcal{O}(rn \log(nT))$ space-time samples are sufficient to ensure accurate recovery of a rank-$r$ operator $\mathbf{A}$ of size $n \times n$. This establishes that spatial samples can be substituted by a comparable number of space-time samples. We provide an efficient implementation of the proposed IRLS algorithm with space complexity of order $O(r n T)$ and per-iteration time complexity linear in $n$. Numerical experiments for transition operators based on several graph models confirm that the theoretical findings accurately track empirical phase transitions, and illustrate the applicability and scalability of the proposed algorithm.
translated by 谷歌翻译
我们考虑估计与I.I.D的排名$ 1 $矩阵因素的问题。高斯,排名$ 1 $的测量值,这些测量值非线性转化和损坏。考虑到非线性的两种典型选择,我们研究了从随机初始化开始的此非convex优化问题的天然交流更新规则的收敛性能。我们通过得出确定性递归,即使在高维问题中也是准确的,我们显示出算法的样本分割版本的敏锐收敛保证。值得注意的是,虽然无限样本的种群更新是非信息性的,并提示单个步骤中的精确恢复,但算法 - 我们的确定性预测 - 从随机初始化中迅速地收敛。我们尖锐的非反应分析也暴露了此问题的其他几种细粒度,包括非线性和噪声水平如何影响收敛行为。从技术层面上讲,我们的结果可以通过证明我们的确定性递归可以通过我们的确定性顺序来预测我们的确定性序列,而当每次迭代都以$ n $观测来运行时,我们的确定性顺序可以通过$ n^{ - 1/2} $的波动。我们的技术利用了源自有关高维$ m $估计文献的遗留工具,并为通过随机数据的其他高维优化问题的随机初始化而彻底地分析了高阶迭代算法的途径。
translated by 谷歌翻译
矩阵正常模型,高斯矩阵变化分布的系列,其协方差矩阵是两个较低尺寸因子的Kronecker乘积,经常用于模拟矩阵变化数据。张量正常模型将该家庭推广到三个或更多因素的Kronecker产品。我们研究了矩阵和张量模型中协方差矩阵的Kronecker因子的估计。我们向几个自然度量中的最大似然估计器(MLE)实现的误差显示了非因素界限。与现有范围相比,我们的结果不依赖于条件良好或稀疏的因素。对于矩阵正常模型,我们所有的所有界限都是最佳的对数因子最佳,对于张量正常模型,我们对最大因数和整体协方差矩阵的绑定是最佳的,所以提供足够的样品以获得足够的样品以获得足够的样品常量Frobenius错误。在与我们的样本复杂性范围相同的制度中,我们表明迭代程序计算称为触发器算法称为触发器算法的MLE的线性地收敛,具有高概率。我们的主要工具是Fisher信息度量诱导的正面矩阵的几何中的测地强凸性。这种强大的凸起由某些随机量子通道的扩展来决定。我们还提供了数值证据,使得将触发器算法与简单的收缩估计器组合可以提高缺乏采样制度的性能。
translated by 谷歌翻译
社区检测和正交组同步是科学和工程中各种重要应用的基本问题。在这项工作中,我们考虑了社区检测和正交组同步的联合问题,旨在恢复社区并同时执行同步。为此,我们提出了一种简单的算法,该算法由频谱分解步骤组成,然后是彼此枢转的QR分解(CPQR)。所提出的算法与数据点数线性有效且缩放。我们还利用最近开发的“休闲一淘汰”技术来建立近乎最佳保证,以确切地恢复集群成员资格,并稳定地恢复正交变换。数值实验证明了我们算法的效率和功效,并确认了我们的理论表征。
translated by 谷歌翻译
本文研究了基于Laplacian Eigenmaps(Le)的基于Laplacian EIGENMAPS(PCR-LE)的主要成分回归的统计性质,这是基于Laplacian Eigenmaps(Le)的非参数回归的方法。 PCR-LE通过投影观察到的响应的向量$ {\ bf y} =(y_1,\ ldots,y_n)$ to to changbood图表拉普拉斯的某些特征向量跨越的子空间。我们表明PCR-Le通过SoboLev空格实现了随机设计回归的最小收敛速率。在设计密度$ P $的足够平滑条件下,PCR-le达到估计的最佳速率(其中已知平方$ l ^ 2 $ norm的最佳速率为$ n ^ { - 2s /(2s + d) )} $)和健美的测试($ n ^ { - 4s /(4s + d)$)。我们还表明PCR-LE是\ EMPH {歧管Adaptive}:即,我们考虑在小型内在维度$ M $的歧管上支持设计的情况,并为PCR-LE提供更快的界限Minimax估计($ n ^ { - 2s /(2s + m)$)和测试($ n ^ { - 4s /(4s + m)$)收敛率。有趣的是,这些利率几乎总是比图形拉普拉斯特征向量的已知收敛率更快;换句话说,对于这个问题的回归估计的特征似乎更容易,统计上讲,而不是估计特征本身。我们通过经验证据支持这些理论结果。
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard, because it contains vector cardinality minimization as a special case.In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is Ω(r(m + n) log mn), where m, n are the dimensions of the matrix, and r is its rank.The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
translated by 谷歌翻译
This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models-including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation-which exploits a certain tensor structure in their low-order observable moments (typically, of second-and third-order). Specifically, parameter estimation is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric tensor derived from the moments; this decomposition can be viewed as a natural generalization of the singular value decomposition for matrices. Although tensor decompositions are generally intractable to compute, the decomposition of these specially structured tensors can be efficiently obtained by a variety of approaches, including power iterations and maximization approaches (similar to the case of matrices). A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin's perturbation theorem for the singular vectors of matrices. This implies a robust and computationally tractable estimation approach for several popular latent variable models.
translated by 谷歌翻译
凸(特别是半决赛)放松提供了一种强大的方法来构建健壮的机器感知系统,从而使在许多实际情况下确切地恢复了全球最佳的挑战估计问题的最佳解决方案。然而,解决这种方法的大规模半决赛松弛仍然是一项巨大的计算挑战。在许多最先进的(基于孟买分解)可认证的估计方法的主要成本是解决方案验证(测试给定候选解决方案的全球最佳性),这需要计算一定的对称证书矩阵的最低特征型。 。在本文中,我们展示了如何显着加速此验证步骤,从而使可认证的估计方法的总体速度。首先,我们表明,在Burer-Monteiro方法中产生的证书矩阵通常具有光谱,使验证问题使用标准的迭代特征值方法昂贵。然后,我们展示了如何使用预处理的特征材料来应对这一挑战;具体而言,我们根据局部最佳块预处理共轭梯度(LOBPCG)方法设计了一种专门的解决方案验证算法,并使用简单但高效的代数预处理。对各种模拟和现实世界的实验评估表明,我们提出的验证方案在实践中非常有效,可以通过多达280倍加速溶液验证,而总体burer-monteiro方法最多可通过16倍,而当标准Lanczos方法与标准的Lanczos方法相比适用于源自大规模巨大基准测试的松弛。
translated by 谷歌翻译
学习线性时间不变动态系统(LTID)的参数是当前兴趣的问题。在许多应用程序中,人们有兴趣联合学习多个相关LTID的参数,这仍然是未探究的日期。为此,我们开发一个联合估计器,用于学习共享常见基矩阵的LTID的过渡矩阵。此外,我们建立有限时间误差界限,取决于底层的样本大小,维度,任务数和转换矩阵的光谱属性。结果是在轻度规律假设下获得的,并在单独学习每个系统的比较中,展示从LTID的汇集信息汇总信息。我们还研究了错过过渡矩阵的联合结构的影响,并显示成立的结果在适度误操作的存在下是强大的。
translated by 谷歌翻译
本文提出了一种以直接非凸起的方式解决社区检测和组同步问题的广义电力方法(GPM)。在随机组块模型(SGBM)下,理论分析表明该算法能够在$ O(n \ log ^ 2n)$ time中完全恢复地面真相,急剧优化了SEMIDEfinite编程(SDP)的基准方法O(n ^ {3.5})$时间。此外,参数的下限作为精确恢复GPM的必要条件。新界违反了随机块模型(SBM)下纯社区检测的信息 - 理论阈值,从而展示了我们在连续执行两个任务的琐碎的两级方法上的同时优化算法的优越性。我们还对GPM和SDP进行了数值实验,以证据和补充我们的理论分析。
translated by 谷歌翻译
在许多应用中,我们获得了流畅的函数的嘈杂模态样本的访问,其目标是鲁棒地解开样本,即估计该功能的原始样本。在最近的工作中,Cucuringu和Tyagi通过首先将它们代表在单元复杂圆上,然后解决平滑度规则化最小二乘问题 - Laplacian的平滑度适用的Proximity Graph的平滑度$ G $ - ON单位圆的产品歧管。这个问题是二次受约束的二次程序(QCQP),其是非凸显的,因此提出解决其球形放松导致信任区域子问题(TRS)。就理论担保而言,派生$ \ ell_2 $错误界限(trs)。然而,这些界限通常弱,并且没有真正证明由(TRS)进行的去噪。在这项工作中,我们分析(TRS)以及(QCQP)的不受约束的放松。对于这些估算器,我们在高斯噪声的设置中提供了一种精致的分析,并导出了噪音制度,其中他们可否证明模数观察W.R.T $ \ ell_2 $常规。分析在$ G $是任何连接的图形中的常规设置中进行。
translated by 谷歌翻译