Many current approaches to machine learning in particle physics use generic architectures that require large numbers of parameters and disregard underlying physics principles, limiting their applicability as scientific modeling tools. In this work, we present a machine learning architecture that uses a set of inputs maximally reduced with respect to the full 6-dimensional Lorentz symmetry, and is fully permutation-equivariant throughout. We study the application of this network architecture to the standard task of top quark tagging and show that the resulting network outperforms all existing competitors despite much lower model complexity. In addition, we present a Lorentz-covariant variant of the same network applied to a 4-momentum regression task.
translated by 谷歌翻译
There has been significant work recently in developing machine learning models in high energy physics (HEP), for tasks such as classification, simulation, and anomaly detection. Typically, these models are adapted from those designed for datasets in computer vision or natural language processing without necessarily incorporating inductive biases suited to HEP data, such as respecting its inherent symmetries. Such inductive biases can make the model more performant and interpretable, and reduce the amount of training data needed. To that end, we develop the Lorentz group autoencoder (LGAE), an autoencoder model equivariant with respect to the proper, orthochronous Lorentz group $\mathrm{SO}^+(3,1)$, with a latent space living in the representations of the group. We present our architecture and several experimental results on jets at the LHC and find it significantly outperforms a non-Lorentz-equivariant graph neural network baseline on compression and reconstruction, and anomaly detection. We also demonstrate the advantage of such an equivariant model in analyzing the latent space of the autoencoder, which can have a significant impact on the explainability of anomalies found by such black-box machine learning models.
translated by 谷歌翻译
Within the glassy liquids community, the use of Machine Learning (ML) to model particles' static structure in order to predict their future dynamics is currently a hot topic. The actual state of the art consists in Graph Neural Networks (GNNs) (Bapst 2020) which, beside having a great expressive power, are heavy models with numerous parameters and lack interpretability. Inspired by recent advances (Thomas 2018), we build a GNN that learns a robust representation of the glass' static structure by constraining it to preserve the roto-translation (SE(3)) equivariance. We show that this constraint not only significantly improves the predictive power but also allows to reduce the number of parameters while improving the interpretability. Furthermore, we relate our learned equivariant features to well-known invariant expert features, which are easily expressible with a single layer of our network.
translated by 谷歌翻译
大型强子撞机的不稳定沉重粒子的创造是解决物理学中最深处的最深处的最直接方式。碰撞通常产生可变尺寸的观察粒子,其具有固有的歧义,使观察到的颗粒的分配复杂于重质颗粒的腐烂产物。在物理界解决这些挑战的当前策略忽略了腐烂产品的物理对称,并考虑所有可能的分配排列,并不扩展到复杂的配置。基于注意的序列建模的深度学习方法在自然语言处理中取得了最先进的性能,但它们缺乏内置机制来处理物理集分配问题中发现的独特对称性。我们介绍了一种建构对称保护的新方法,用于保护对称保护的网络,反映问题的自然侵略者,以有效地找到任务而不评估所有排列。这种通用方法适用于任意复杂的配置,并且显着优于当前方法,提高了在典型的基准问题上的19 \%-35 \%之间的重建效率,同时在最复杂的事件上将推理时间减少两到五个数量级,使得许多重要和以前顽固的病例易腐烂。包含常规库的完整代码存储库,使用的特定配置和完整的数据集发布,是在https://github.com/alexanders101/spanet的avawaiable
translated by 谷歌翻译
群体模棱两可(例如,SE(3)均衡性)是科学的关键物理对称性,从经典和量子物理学到计算生物学。它可以在任意参考转换下实现强大而准确的预测。鉴于此,已经为将这种对称性编码为深神经网络而做出了巨大的努力,该网络已被证明可以提高下游任务的概括性能和数据效率。构建模棱两可的神经网络通常会带来高计算成本以确保表现力。因此,如何更好地折衷表现力和计算效率在模棱两可的深度学习模型的设计中起着核心作用。在本文中,我们提出了一个框架来构建可以有效地近似几何量的se(3)等效图神经网络。受差异几何形状和物理学的启发,我们向图形神经网络介绍了局部完整帧,因此可以将以给定订单的张量信息投射到框架上。构建本地框架以形成正常基础,以避免方向变性并确保完整性。由于框架仅是由跨产品操作构建的,因此我们的方法在计算上是有效的。我们在两个任务上评估我们的方法:牛顿力学建模和平衡分子构象的产生。广泛的实验结果表明,我们的模型在两种类型的数据集中达到了最佳或竞争性能。
translated by 谷歌翻译
深度学习方法正在成为高能量物理(HEP)中数据分析的首选方法。尽管如此,大多数以物理启发的现代体系结构在计算上效率低下,缺乏解释性。JET标记算法尤其如此,考虑到现代粒子探测器产生的大量数据,计算效率至关重要。在这项工作中,我们为喷气式代表介绍了一个新颖,多功能和透明的框架。Lorentz Group Boosts不变,这在喷气标记基准测试基准方面具有很高的精度,同时比其他现代方法更快地训练和评估了训练和评估。
translated by 谷歌翻译
模棱两可的神经网络,其隐藏的特征根据G组作用于数据的表示,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变和模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变的术语和模棱两可的组动作组件分开。关键的想法是,网络学会通过学习预测适当的小组操作来对齐输入和输出姿势以解决重建任务的适当组动作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出必要的条件,并提出了对任何G(离散且连续的)有效的构造。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。
translated by 谷歌翻译
AutoEncoders在异常检测中具有高能物理学中的有用应用,特别是对于喷气机 - 在碰撞中产生的颗粒的准直淋浴,例如Cern大型强子撞机的碰撞。我们探讨了基于图形的AutoEncoders,它们在其“粒子云”表示中的喷射器上运行,并且可以在喷气机内的粒子中利用相互依存的依赖性,用于这种任务。另外,我们通过图形神经网络对能量移动器的距离开发可差的近似,这随后可以用作自动化器的重建损耗函数。
translated by 谷歌翻译
了解晕星连接是基本的,以提高我们对暗物质的性质和性质的知识。在这项工作中,我们构建一个模型,鉴于IT主机的星系的位置,速度,恒星群体和半径的位置。为了捕获来自星系属性的相关性及其相位空间的相关信息,我们使用图形神经网络(GNN),该网络设计用于使用不规则和稀疏数据。我们从宇宙学和天体物理学中培训了我们在Galaxies上的模型,从宇宙学和天体物理学与机器学习模拟(骆驼)项目。我们的模型,占宇宙学和天体物理的不确定性,能够用$ \ SIM 0.2欧元的准确度来限制晕群。此外,在一套模拟上培训的GNN能够在用利用不同的代码的模拟上进行测试时保留其精度的一部分精度。 GNN的Pytorch几何实现在HTTPS://github.com/pablovd/halographnet上公开可用于github上
translated by 谷歌翻译
在大型强子对撞机上大量生产的顶级夸克,具有复杂的探测器签名,需要特殊的重建技术。最常见的衰减模式是“全杰”频道,导致6月份的最终状态,由于可能的排列数量大量,因此在$ pp $碰撞中尤其难以重建。我们使用广义注意机制基于神经网络提出了一种新的问题,我们称之为对称性保留注意力网络(SPA-NET)。我们训练一个这样的网络,以明确地识别每个顶级夸克的衰减产品,而无需组合爆炸作为该技术的力量的一个例子。这种方法大大优于现有的最新方法,正确分配了所有喷气机,以$ 93.0%的价格分配了所有喷气机$ 6 $ -JET,$ 87.8%的$ 7 $ -JET $和$ 82.6%的$ \ geq 8 $ -JET活动。
translated by 谷歌翻译
机器学习在加强和加速寻求新基本物理学方面发挥着至关重要的作用。我们审查了新物理学的机器学习方法和应用中,在地面高能量物理实验的背景下,包括大型强子撞机,罕见的事件搜索和中微生实验。虽然机器学习在这些领域拥有悠久的历史,但深入学习革命(2010年代初)就研究的范围和雄心而产生了定性转变。这些现代化的机器学习发展是本综述的重点。
translated by 谷歌翻译
包括协调性信息,例如位置,力,速度或旋转在计算物理和化学中的许多任务中是重要的。我们介绍了概括了等级图形网络的可控e(3)的等值图形神经网络(Segnns),使得节点和边缘属性不限于不变的标量,而是可以包含相协同信息,例如矢量或张量。该模型由可操纵的MLP组成,能够在消息和更新功能中包含几何和物理信息。通过可操纵节点属性的定义,MLP提供了一种新的Activation函数,以便与可转向功能字段一般使用。我们讨论我们的镜头通过等级的非线性卷曲镜头讨论我们的相关工作,进一步允许我们引脚点点的成功组件:非线性消息聚集在经典线性(可操纵)点卷积上改善;可操纵的消息在最近发送不变性消息的最近的等价图形网络上。我们展示了我们对计算物理学和化学的若干任务的方法的有效性,并提供了广泛的消融研究。
translated by 谷歌翻译
喷气标记是粒子物理学中的一项关键但具有挑战性的分类任务。尽管深度学习已经改变了喷气标记并显着提高了性能,但缺乏大规模的公共数据集阻碍了进一步的增强。在这项工作中,我们提出了JetClass,这是一种用于喷气标记的新综合数据集。 JETCLASS数据集由100 M喷气机组成,比现有公共数据集大约两个数量级。总共模拟了10种类型的喷气机,包括到目前为止未探索用于标记的几种类型。基于大型数据集,我们提出了一种用于喷射标记的新的基于变压器的体系结构,称为“粒子变压器”(部分)。通过将成对的粒子相互作用纳入注意机制,部分可以达到比普通变压器更高的标记性能,并超过了先前最新的颗粒,颗粒的幅度很大。一旦进行了微调,预先训练的零件模型也大大提高了两个广泛采用的喷气标记基准的性能。数据集,代码和模型可在https://github.com/jet-universe/particle_transformer上公开获得。
translated by 谷歌翻译
在计算化学和材料科学中,创建快速准确的力场是一项长期挑战。最近,已经证明,几个直径传递神经网络(MPNN)超过了使用其他方法在准确性方面构建的模型。但是,大多数MPNN的计算成本高和可伸缩性差。我们建议出现这些局限性,因为MPNN仅传递两体消息,从而导致层数与网络的表达性之间的直接关系。在这项工作中,我们介绍了MACE,这是一种使用更高的车身订单消息的新型MPNN模型。特别是,我们表明,使用四体消息将所需的消息传递迭代数减少到\ emph {两},从而导致快速且高度可行的模型,达到或超过RMD17的最新准确性,3BPA和ACAC基准任务。我们还证明,使用高阶消息会导致学习曲线的陡峭程度改善。
translated by 谷歌翻译
计算机视觉和机器学习中的许多问题都可以作为代表高阶关系的超图的学习。 HyperGraph Learning的最新方法基于消息传递扩展了图形神经网络,这在建模远程依赖性和表达能力方面很简单但根本上有限。另一方面,基于张量的模棱两可的神经网络具有最大的表现力,但是由于沉重的计算和对固定顺序超中件的严格假设,它们的应用受到了超图的限制。我们解决了这些问题,并目前呈现了模棱两可的HyperGraph神经网络(EHNN),这是实现一般超图学习最大表达性的层的首次尝试。我们还提出了基于超网(EHNN-MLP)和自我注意力(EHNN-TransFormer)的两个实用实现,这些实现易于实施,理论上比大多数消息传递方法更具表现力。我们证明了它们在一系列超图学习问题中的能力,包括合成K边缘识别,半监督分类和视觉关键点匹配,并报告对强烈消息传递基线的改进性能。我们的实施可从https://github.com/jw9730/ehnn获得。
translated by 谷歌翻译
神经网络和量子蒙特卡罗方法的组合作为前进的高精度电子结构计算的道路出现。以前的建议具有组合具有反对称层的增强的神经网络层,以满足电子波技的反对称要求。但是,迄今为止,如果可以代表物理兴趣的反对称功能,则不清楚尚不清楚,并且难以测量反对称层的富有效果。这项工作通过将明确的防视通用神经网络层作为诊断工具引入明确的防视通用神经网络层来解决这个问题。我们首先介绍一种通用的反对二手(GA)层,我们用于更换称为FEMINET的高精度ANSATZ的整个防反对二层层。我们证明所得到的FERMINET-GA架构可以有效地产生小型系统的确切地位能量。然后,我们考虑一种分解的反对称(FA)层,其通过替换具有反对称神经网络的产品的决定因素的产品更易于推广FERMINET。有趣的是,由此产生的FERMINET-FA架构并不优于FERMINET。这表明抗体产品的总和是Ferminet架构的关键限制方面。为了进一步探索这一点,我们研究了称为全决定性模式的FERMINET的微小修改,其用单一组合的决定蛋白取代了决定因素的每个产物。完整的单决定性Ferminet封闭标准单决定性Ferminet和Ferminet-Ga之间的大部分间隙。令人惊讶的是,在4.0 BoHR的解离键长度的氮素分子上,全单决定性Ferminet可以显着优于标准的64个决定性Ferminet,从而在0.4千卡/摩尔中获得最佳可用计算基准的能量。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
在这项工作中,我们提出了一种神经方法,用于重建描述层次相互作用的生根树图,使用新颖的表示,我们将其称为最低的共同祖先世代(LCAG)矩阵。这种紧凑的配方等效于邻接矩阵,但是如果直接使用邻接矩阵,则可以单独从叶子中学习树的结构,而无需先前的假设。因此,采用LCAG启用了第一个端到端的可训练解决方案,该解决方案仅使用末端树叶直接学习不同树大小的层次结构。在高能量粒子物理学的情况下,粒子衰减形成了分层树结构,只能通过实验观察到最终产物,并且可能的树的大型组合空间使分析溶液变得很棘手。我们证明了LCAG用作使用变压器编码器和神经关系编码器编码器图神经网络的模拟粒子物理衰减结构的任务。采用这种方法,我们能够正确预测LCAG纯粹是从叶子特征中的LCAG,最大树深度为$ 8 $ in $ 92.5 \%\%的树木箱子,最高$ 6 $叶子(包括)和$ 59.7 \%\%\%\%的树木$在我们的模拟数据集中$ 10 $。
translated by 谷歌翻译
合并对称性可以通过定义通过转换相关的数据样本的等效类别来导致高度数据效率和可推广的模型。但是,表征转换如何在输入数据上作用通常很困难,从而限制了模型模型的适用性。我们提出了编码输入空间(例如图像)的学习对称嵌入网络(SENS),我们不知道转换的效果(例如旋转),以在这些操作下以已知方式转换的特征空间。可以通过模棱两可的任务网络端对端训练该网络,以学习明确的对称表示。我们在具有3种不同形式的对称形式的模棱两可的过渡模型的背景下验证了这种方法。我们的实验表明,SENS有助于将模棱两可的网络应用于具有复杂对称表示的数据。此外,相对于全等级和非等价基线的准确性和泛化可以提高准确性和概括。
translated by 谷歌翻译
Recently methods of graph neural networks (GNNs) have been applied to solving the problems in high energy physics (HEP) and have shown its great potential for quark-gluon tagging with graph representation of jet events. In this paper, we introduce an approach of GNNs combined with a HaarPooling operation to analyze the events, called HaarPooling Message Passing neural network (HMPNet). In HMPNet, HaarPooling not only extract the features of graph, but also embed additional information obtained by clustering of k-means of different particle observables. We construct Haarpooling from three different observables: absolute energy $\log E$, transverse momentum $\log p_T$ , and relative coordinates $(\Delta\eta,\Delta\phi)$, then discuss their impacts on the tagging and compare the results with those obtained via MPNN and ParticleNet (PN). The results show that an appropriate selection of information for HaarPooling enhance the accuracy of quark-gluon tagging, for adding extra information of $\log P_T$ to the HMPNet outperforms all the others, meanwhile adding relative coordinates information $(\Delta\eta,\Delta\phi)$ is not very beneficial.
translated by 谷歌翻译