Many researchers have voiced their support towards Pearl's counterfactual theory of causation as a stepping stone for AI/ML research's ultimate goal of intelligent systems. As in any other growing subfield, patience seems to be a virtue since significant progress on integrating notions from both fields takes time, yet, major challenges such as the lack of ground truth benchmarks or a unified perspective on classical problems such as computer vision seem to hinder the momentum of the research movement. This present work exemplifies how the Pearl Causal Hierarchy (PCH) can be understood on image data by providing insights on several intricacies but also challenges that naturally arise when applying key concepts from Pearlian causality to the study of image data.
translated by 谷歌翻译
Research around AI for Science has seen significant success since the rise of deep learning models over the past decade, even with longstanding challenges such as protein structure prediction. However, this fast development inevitably made their flaws apparent -- especially in domains of reasoning where understanding the cause-effect relationship is important. One such domain is drug discovery, in which such understanding is required to make sense of data otherwise plagued by spurious correlations. Said spuriousness only becomes worse with the ongoing trend of ever-increasing amounts of data in the life sciences and thereby restricts researchers in their ability to understand disease biology and create better therapeutics. Therefore, to advance the science of drug discovery with AI it is becoming necessary to formulate the key problems in the language of causality, which allows the explication of modelling assumptions needed for identifying true cause-effect relationships. In this attention paper, we present causal drug discovery as the craft of creating models that ground the process of drug discovery in causal reasoning.
translated by 谷歌翻译
最近的一些作品关于机器学习与因果关系之间的联系。在一个反向思考过程中,从因果模型中的心理模型的基础开始,我们加强了这些初始作品,结果表明XAI实质上要求机器学习学习与手头任务一致的因果关系。通过认识到人类的心理模型(HMM)如何自然地由Pearlian结构性因果模型(SCM)表示,我们通过构建线性SCM的示例度量空间来做出两个关键观察:首先,“真实”数据的概念 - 在SCM下是合理的,其次是,人类衍生的SCM的聚集可能指向“真实” SCM。在这些见解的含义中,我们以第三种观察结果认为,从HMM中得出的解释必须暗示在SCM框架中的解释性。在此直觉之后,我们使用这些首先建立的第一原则提出了原始推导,以揭示与给定SCM一致的人类可读解释方案,证明命名结构性因果解释(SCI)是合理的。进一步,我们从理论和经验上分析了这些SCI及其数学特性。我们证明,任何现有的图形诱导方法(GIM)实际上在科幻义中都是可以解释的。我们的第一个实验(E1)评估了这种基于GIM的SCI的质量。在(E2)中,我们观察到了我们对基于SCI学习的样本效率提高的猜想的证据。对于(e3),我们进行了一项研究(n = 22),并观察基于人类的SCI比GIM的SCI优势,从而证实了我们的初始假设。
translated by 谷歌翻译
Foundation models are subject to an ongoing heated debate, leaving open the question of progress towards AGI and dividing the community into two camps: the ones who see the arguably impressive results as evidence to the scaling hypothesis, and the others who are worried about the lack of interpretability and reasoning capabilities. By investigating to which extent causal representations might be captured by these large scale language models, we make a humble efforts towards resolving the ongoing philosophical conflicts.
translated by 谷歌翻译
Neurally-parameterized Structural Causal Models in the Pearlian notion to causality, referred to as NCM, were recently introduced as a step towards next-generation learning systems. However, said NCM are only concerned with the learning aspect of causal inference but totally miss out on the architecture aspect. That is, actual causal inference within NCM is intractable in that the NCM won't return an answer to a query in polynomial time. This insight follows as corollary to the more general statement on the intractability of arbitrary SCM parameterizations, which we prove in this work through classical 3-SAT reduction. Since future learning algorithms will be required to deal with both high dimensional data and highly complex mechanisms governing the data, we ultimately believe work on tractable inference for causality to be decisive. We also show that not all ``causal'' models are created equal. More specifically, there are models capable of answering causal queries that are not SCM, which we refer to as \emph{partially causal models} (PCM). We provide a tabular taxonomy in terms of tractability properties for all of the different model families, namely correlation-based, PCM and SCM. To conclude our work, we also provide some initial ideas on how to overcome parts of the intractability of causal inference with SCM by showing an example of how parameterizing an SCM with SPN modules can at least allow for tractable mechanisms. We hope that our impossibility result alongside the taxonomy for tractability in causal models can raise awareness for this novel research direction since achieving success with causality in real world downstream tasks will not only depend on learning correct models as we also require having the practical ability to gain access to model inferences.
translated by 谷歌翻译
一个令人着迷的假设是,人类和动物的智力可以通过一些原则(而不是启发式方法的百科全书清单)来解释。如果这个假设是正确的,我们可以更容易地理解自己的智能并建造智能机器。就像物理学一样,原理本身不足以预测大脑等复杂系统的行为,并且可能需要大量计算来模拟人类式的智力。这一假设将表明,研究人类和动物所剥削的归纳偏见可以帮助阐明这些原则,并为AI研究和神经科学理论提供灵感。深度学习已经利用了几种关键的归纳偏见,这项工作考虑了更大的清单,重点是关注高级和顺序有意识的处理的工作。阐明这些特定原则的目的是,它们有可能帮助我们建立从人类的能力中受益于灵活分布和系统概括的能力的AI系统,目前,这是一个领域艺术机器学习和人类智力。
translated by 谷歌翻译
有良好的因果建模框架,但是这些框架需要许多人类领域的专业知识来定义因果变量并执行干预措施。为了使自主代理通过互动经验学习抽象的因果模型,需要扩展和澄清现有的理论基础。现有框架没有关于可变选择 /表示形式的指导,更重要的是,没有迹象表明国家空间的行为政策或物理转换不得将其视为干预措施。本文中概述的框架将动作描述为状态空间的转换,例如由运行策略的代理引起的。这使得以统一的方式描述了微型状态空间的转换及其抽象模型,并说后者何时是垂直 /接地 /自然的。然后,我们介绍(因果)变量,将机制定义为不变的预测因子,并说何时可以将动作视为``手术干预'',从而将因果关系和干预技能学习的目标带入了更清晰的焦点。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
本文介绍了在结构因果模型(SCM)的一般空间上定义的一系列拓扑结构,介绍了因果推断的拓扑学习 - 理论观点。作为框架的说明,我们证明了拓扑因果层次结构定理,表明只有在微薄的SCM集中就可以实现了无实体的假设因果推断。由于弱拓扑结构和统计上可验证假设的开放集之间的已知对应关系,我们的结果表明,原则上的归纳假设足以许可有效的因果推论是统计上无可核实的。类似于无午餐定理的统计推断,目前的结果阐明了因果推断的实质性假设的必然性。我们拓扑方法的额外好处是它很容易容纳具有无限变量的SCM。我们终于建议该框架对探索和评估替代因果归纳的积极项目有所帮助。
translated by 谷歌翻译
药物的因果模型已用于分析机器学习系统的安全性方面。但是,识别代理是非平凡的 - 通常只是由建模者假设而没有太多理由来实现因果模型 - 建模失败可能会导致安全分析中的错误。本文提出了对代理商的第一个正式因果定义 - 大约是代理人是制度,如果他们的行为以不同的方式影响世界,则可以改善其政策。由此,我们得出了第一个用于从经验数据中发现代理的因果发现算法,并提供了用于在因果模型和游戏理论影响图之间转换的算法。我们通过解决不正确的因果模型引起的一些混乱来证明我们的方法。
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
我们提出了普遍因果关系,这是一个基于类别理论的总体框架,该框架定义了基于因果推理的普遍特性,该属性独立于所使用的基本代表性形式主义。更正式的是,普遍的因果模型被定义为由对象和形态组成的类别,它们代表因果影响,以及进行干预措施(实验)和评估其结果(观察)的结构。函子在类别之间的映射和自然变换映射在相同两个类别的一对函子之间。我们框架中的抽象因果图是使用类别理论的通用构造构建的,包括抽象因果图的限制或共限制,或更普遍的KAN扩展。我们提出了普遍因果推断的两个基本结果。第一个结果称为普遍因果定理(UCT),与图的通用性有关,这些结果被视为函数映射对象和关系从抽象因果图的索引类别到一个实际因果模型,其节点由随机变量标记为实际因果模型和边缘代表功能或概率关系。 UCT指出,任何因果推论都可以以规范的方式表示为代表对象的抽象因果图的共同限制。 UCT取决于滑轮理论的基本结果。第二个结果是因果繁殖特性(CRP),指出对象x对另一个对象y的任何因果影响都可以表示为两个抽象因果图之间的自然转化。 CRP来自Yoneda引理,这是类别理论中最深层的结果之一。 CRP属性类似于复制元素希尔伯特空间中的繁殖属性,该元素是机器学习中内核方法的基础。
translated by 谷歌翻译
Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it is the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school. * Equal contribution. This work was done while JL was a Research Fellow at the Alan Turing Institute. 2 https://obamawhitehouse.archives.gov/blog/2016/05/04/big-risks-big-opportunities-intersection-big-dataand-civil-rights 31st Conference on Neural Information Processing Systems (NIPS 2017),
translated by 谷歌翻译
我们基于从多个数据集的合并信息介绍了一种反事实推断的方法。我们考虑了统计边际问题的因果重新重新制定:鉴于边际结构因果模型(SCM)的集合在不同但重叠的变量集上,请确定与边际相反一致的关节SCMS集。我们使用响应函数配方对分类SCM进行了形式化这种方法,并表明它降低了允许的边际和关节SCM的空间。因此,我们的工作通过其他变量突出了一种通过其他变量的新模式,与统计数据相反。
translated by 谷歌翻译
这项调查回顾了对基于视觉的自动驾驶系统进行行为克隆训练的解释性方法。解释性的概念具有多个方面,并且需要解释性的驾驶强度是一种安全至关重要的应用。从几个研究领域收集贡献,即计算机视觉,深度学习,自动驾驶,可解释的AI(X-AI),这项调查可以解决几点。首先,它讨论了从自动驾驶系统中获得更多可解释性和解释性的定义,上下文和动机,以及该应用程序特定的挑战。其次,以事后方式为黑盒自动驾驶系统提供解释的方法是全面组织和详细的。第三,详细介绍和讨论了旨在通过设计构建更容易解释的自动驾驶系统的方法。最后,确定并检查了剩余的开放挑战和潜在的未来研究方向。
translated by 谷歌翻译
用于计算机视觉任务的深度神经网络在越来越安全 - 严重和社会影响的应用中部署,激励需要在各种,天然存在的成像条件下关闭模型性能的差距。在包括对抗机器学习的多种上下文中尤为色难地使用的鲁棒性,然后指在自然诱导的图像损坏或改变下保持模型性能。我们进行系统审查,以识别,分析和总结当前定义以及对计算机愿景深度学习中的非对抗鲁棒性的进展。我们发现,该研究领域已经收到了相对于对抗机器学习的不成比例地注意力,但存在显着的稳健性差距,这些差距通常表现在性能下降中与对抗条件相似。为了在上下文中提供更透明的稳健性定义,我们引入了数据生成过程的结构因果模型,并将非对抗性鲁棒性解释为模型在损坏的图像上的行为,其对应于来自未纳入数据分布的低概率样本。然后,我们确定提高神经网络鲁棒性的关键架构,数据增强和优化策略。这种稳健性的这种因果观察表明,目前文献中的常见做法,关于鲁棒性策略和评估,对应于因果概念,例如软干预导致成像条件的决定性分布。通过我们的调查结果和分析,我们提供了对未来研究如何可能介意这种明显和显着的非对抗的鲁棒性差距的观点。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
可解释的人工智能(XAI)是一系列技术,可以理解人工智能(AI)系统的技术和非技术方面。 Xai至关重要,帮助满足\ emph {可信赖}人工智能的日益重要的需求,其特点是人类自主,防止危害,透明,问责制等的基本特征,反事实解释旨在提供最终用户需要更改的一组特征(及其对应的值)以实现所需的结果。目前的方法很少考虑到实现建议解释所需的行动的可行性,特别是他们缺乏考虑这些行为的因果影响。在本文中,我们将反事实解释作为潜在空间(CEILS)的干预措施,一种方法来生成由数据从数据设计潜在的因果关系捕获的反事实解释,并且同时提供可行的建议,以便到达所提出的配置文件。此外,我们的方法具有以下优点,即它可以设置在现有的反事实发生器算法之上,从而最小化施加额外的因果约束的复杂性。我们展示了我们使用合成和实际数据集的一组不同实验的方法的有效性(包括金融领域的专有数据集)。
translated by 谷歌翻译
算法公平吸引了机器学习社区越来越多的关注。文献中提出了各种定义,但是它们之间的差异和联系并未清楚地解决。在本文中,我们回顾并反思了机器学习文献中先前提出的各种公平概念,并试图与道德和政治哲学,尤其是正义理论的论点建立联系。我们还从动态的角度考虑了公平的询问,并进一步考虑了当前预测和决策引起的长期影响。鉴于特征公平性的差异,我们提出了一个流程图,该流程图包括对数据生成过程,预测结果和诱导的影响的不同类型的公平询问的隐式假设和预期结果。本文展示了与任务相匹配的重要性(人们希望执行哪种公平性)和实现预期目的的手段(公平分析的范围是什么,什么是适当的分析计划)。
translated by 谷歌翻译
在流行媒体中,人造代理商的意识出现与同时实现人类或超人水平智力的那些相同的代理之间通常存在联系。在这项工作中,我们探讨了意识和智力之间这种看似直观的联系的有效性和潜在应用。我们通过研究与三种当代意识功能理论相关的认知能力:全球工作空间理论(GWT),信息生成理论(IGT)和注意力模式理论(AST)。我们发现,这三种理论都将有意识的功能专门与人类领域将军智力的某些方面联系起来。有了这个见解,我们转向人工智能领域(AI),发现尽管远未证明一般智能,但许多最先进的深度学习方法已经开始纳入三个功能的关键方面理论。确定了这一趋势后,我们以人类心理时间旅行的激励例子来提出方式,其中三种理论中每种理论的见解都可以合并为一个单一的统一和可实施的模型。鉴于三种功能理论中的每一种都可以通过认知能力来实现这一可能,因此,具有精神时间旅行的人造代理不仅具有比当前方法更大的一般智力,而且还与我们当前对意识功能作用的理解更加一致在人类中,这使其成为AI研究的有希望的近期目标。
translated by 谷歌翻译