Research around AI for Science has seen significant success since the rise of deep learning models over the past decade, even with longstanding challenges such as protein structure prediction. However, this fast development inevitably made their flaws apparent -- especially in domains of reasoning where understanding the cause-effect relationship is important. One such domain is drug discovery, in which such understanding is required to make sense of data otherwise plagued by spurious correlations. Said spuriousness only becomes worse with the ongoing trend of ever-increasing amounts of data in the life sciences and thereby restricts researchers in their ability to understand disease biology and create better therapeutics. Therefore, to advance the science of drug discovery with AI it is becoming necessary to formulate the key problems in the language of causality, which allows the explication of modelling assumptions needed for identifying true cause-effect relationships. In this attention paper, we present causal drug discovery as the craft of creating models that ground the process of drug discovery in causal reasoning.
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
发现新药是寻求并证明因果关系。作为一种新兴方法利用人类的知识和创造力,数据和机器智能,因果推论具有减少认知偏见并改善药物发现决策的希望。尽管它已经在整个价值链中应用了,但因子推理的概念和实践对许多从业者来说仍然晦涩难懂。本文提供了有关因果推理的非技术介绍,审查了其最新应用,并讨论了在药物发现和开发中采用因果语言的机会和挑战。
translated by 谷歌翻译
数据科学任务可以被视为了解数据的感觉或测试关于它的假设。从数据推断的结论可以极大地指导我们做出信息做出决定。大数据使我们能够与机器学习结合执行无数的预测任务,例如鉴定患有某种疾病的高风险患者并采取可预防措施。然而,医疗保健从业者不仅仅是仅仅预测的内容 - 它们也对输入特征和临床结果之间的原因关系感兴趣。了解这些关系将有助于医生治疗患者并有效降低风险。通常通过随机对照试验鉴定因果关系。当科学家和研究人员转向观察研究并试图吸引推论时,这种试验通常是不可行的。然而,观察性研究也可能受到选择和/或混淆偏差的影响,这可能导致错误的因果结论。在本章中,我们将尝试突出传统机器学习和统计方法中可能出现的一些缺点,以分析观察数据,特别是在医疗保健数据分析域中。我们将讨论因果化推理和方法,以发现医疗领域的观测研究原因。此外,我们将展示因果推断在解决某些普通机器学习问题等中的应用,例如缺少数据和模型可运输性。最后,我们将讨论将加强学习与因果关系相结合的可能性,作为反击偏见的一种方式。
translated by 谷歌翻译
Neurally-parameterized Structural Causal Models in the Pearlian notion to causality, referred to as NCM, were recently introduced as a step towards next-generation learning systems. However, said NCM are only concerned with the learning aspect of causal inference but totally miss out on the architecture aspect. That is, actual causal inference within NCM is intractable in that the NCM won't return an answer to a query in polynomial time. This insight follows as corollary to the more general statement on the intractability of arbitrary SCM parameterizations, which we prove in this work through classical 3-SAT reduction. Since future learning algorithms will be required to deal with both high dimensional data and highly complex mechanisms governing the data, we ultimately believe work on tractable inference for causality to be decisive. We also show that not all ``causal'' models are created equal. More specifically, there are models capable of answering causal queries that are not SCM, which we refer to as \emph{partially causal models} (PCM). We provide a tabular taxonomy in terms of tractability properties for all of the different model families, namely correlation-based, PCM and SCM. To conclude our work, we also provide some initial ideas on how to overcome parts of the intractability of causal inference with SCM by showing an example of how parameterizing an SCM with SPN modules can at least allow for tractable mechanisms. We hope that our impossibility result alongside the taxonomy for tractability in causal models can raise awareness for this novel research direction since achieving success with causality in real world downstream tasks will not only depend on learning correct models as we also require having the practical ability to gain access to model inferences.
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
Many researchers have voiced their support towards Pearl's counterfactual theory of causation as a stepping stone for AI/ML research's ultimate goal of intelligent systems. As in any other growing subfield, patience seems to be a virtue since significant progress on integrating notions from both fields takes time, yet, major challenges such as the lack of ground truth benchmarks or a unified perspective on classical problems such as computer vision seem to hinder the momentum of the research movement. This present work exemplifies how the Pearl Causal Hierarchy (PCH) can be understood on image data by providing insights on several intricacies but also challenges that naturally arise when applying key concepts from Pearlian causality to the study of image data.
translated by 谷歌翻译
最近的一些作品关于机器学习与因果关系之间的联系。在一个反向思考过程中,从因果模型中的心理模型的基础开始,我们加强了这些初始作品,结果表明XAI实质上要求机器学习学习与手头任务一致的因果关系。通过认识到人类的心理模型(HMM)如何自然地由Pearlian结构性因果模型(SCM)表示,我们通过构建线性SCM的示例度量空间来做出两个关键观察:首先,“真实”数据的概念 - 在SCM下是合理的,其次是,人类衍生的SCM的聚集可能指向“真实” SCM。在这些见解的含义中,我们以第三种观察结果认为,从HMM中得出的解释必须暗示在SCM框架中的解释性。在此直觉之后,我们使用这些首先建立的第一原则提出了原始推导,以揭示与给定SCM一致的人类可读解释方案,证明命名结构性因果解释(SCI)是合理的。进一步,我们从理论和经验上分析了这些SCI及其数学特性。我们证明,任何现有的图形诱导方法(GIM)实际上在科幻义中都是可以解释的。我们的第一个实验(E1)评估了这种基于GIM的SCI的质量。在(E2)中,我们观察到了我们对基于SCI学习的样本效率提高的猜想的证据。对于(e3),我们进行了一项研究(n = 22),并观察基于人类的SCI比GIM的SCI优势,从而证实了我们的初始假设。
translated by 谷歌翻译
一个令人着迷的假设是,人类和动物的智力可以通过一些原则(而不是启发式方法的百科全书清单)来解释。如果这个假设是正确的,我们可以更容易地理解自己的智能并建造智能机器。就像物理学一样,原理本身不足以预测大脑等复杂系统的行为,并且可能需要大量计算来模拟人类式的智力。这一假设将表明,研究人类和动物所剥削的归纳偏见可以帮助阐明这些原则,并为AI研究和神经科学理论提供灵感。深度学习已经利用了几种关键的归纳偏见,这项工作考虑了更大的清单,重点是关注高级和顺序有意识的处理的工作。阐明这些特定原则的目的是,它们有可能帮助我们建立从人类的能力中受益于灵活分布和系统概括的能力的AI系统,目前,这是一个领域艺术机器学习和人类智力。
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
我们概述了新兴机会和挑战,以提高AI对科学发现的效用。AI为行业的独特目标与AI科学的目标创造了识别模式中的识别模式与来自数据的发现模式之间的紧张。如果我们解决了与域驱动的科学模型和数据驱动的AI学习机之间的“弥补差距”相关的根本挑战,那么我们预计这些AI模型可以改变假说发电,科学发现和科学过程本身。
translated by 谷歌翻译
Foundation models are subject to an ongoing heated debate, leaving open the question of progress towards AGI and dividing the community into two camps: the ones who see the arguably impressive results as evidence to the scaling hypothesis, and the others who are worried about the lack of interpretability and reasoning capabilities. By investigating to which extent causal representations might be captured by these large scale language models, we make a humble efforts towards resolving the ongoing philosophical conflicts.
translated by 谷歌翻译
我们的许多实验旨在发现数据生成机制(即现象)背后的原因和效果。最重要的是,阐明一个模型,该模型可以使我们能够进一步探索手头上的现象和/或允许我们准确预测它。从根本上讲,这种模型可能是通过因果方法来得出的(与观察或经验平均值相反)。在这种方法中,需要因果发现来创建因果模型,然后可以应用该因果模型来推断干预措施的影响,并回答我们可能拥有的任何假设问题(即以什么IFS的形式)。本文为因果发现和因果推断提供了一个案例,并与传统的机器学习方法进行了对比。都是从公民和结构工程的角度来看。更具体地说,本文概述了因果关系的关键原理以及因果发现和因果推断的最常用算法和包。最后,本文还提出了一系列示例和案例研究,介绍了如何为我们的领域采用因果概念。
translated by 谷歌翻译
Causal deep learning (CDL) is a new and important research area in the larger field of machine learning. With CDL, researchers aim to structure and encode causal knowledge in the extremely flexible representation space of deep learning models. Doing so will lead to more informed, robust, and general predictions and inference -- which is important! However, CDL is still in its infancy. For example, it is not clear how we ought to compare different methods as they are so different in their output, the way they encode causal knowledge, or even how they represent this knowledge. This is a living paper that categorises methods in causal deep learning beyond Pearl's ladder of causation. We refine the rungs in Pearl's ladder, while also adding a separate dimension that categorises the parametric assumptions of both input and representation, arriving at the map of causal deep learning. Our map covers machine learning disciplines such as supervised learning, reinforcement learning, generative modelling and beyond. Our paradigm is a tool which helps researchers to: find benchmarks, compare methods, and most importantly: identify research gaps. With this work we aim to structure the avalanche of papers being published on causal deep learning. While papers on the topic are being published daily, our map remains fixed. We open-source our map for others to use as they see fit: perhaps to offer guidance in a related works section, or to better highlight the contribution of their paper.
translated by 谷歌翻译
科学研究的基本目标是了解因果关系。然而,尽管因果关系在生活和社会科学中的重要作用,但在自然语言处理(NLP)中并不具有相同的重要性,而自然语言处理(NLP)传统上更加重视预测任务。这种区别开始逐渐消失,随着因果推理和语言处理的融合,跨学科研究的新兴领域。尽管如此,关于NLP因果关系的研究仍然散布在没有统一的定义,基准数据集的情况下,并清楚地表达了将因果推论应用于文本领域的挑战和机遇,并具有其独特的属性。在这项调查中,我们巩固了整个学术领域的研究,并将其置于更广泛的NLP景观中。我们介绍了用文本估算因果效应的统计挑战,其中包含文本用作结果,治疗或解决混杂问题的设置。此外,我们探讨了因果推理的潜在用途,以提高NLP模型的鲁棒性,公平性和解释性。因此,我们提供了NLP社区因果推断的统一概述。
translated by 谷歌翻译
意识和智力是通常被民间心理学和社会所理解的特性。人工智能一词及其在近年来设法解决的问题是一种论点,以确立机器经历某种意识。遵循罗素的类比,如果一台机器能够做一个有意识的人所做的事情,那么机器有意识的可能性就会增加。但是,这种类比的社会含义是灾难性的。具体而言,如果对可以解决神经典型人可能会解决的问题的实体赋予了权利,那么机器是否具有更多的残疾人权利?例如,自闭症综合征障碍频谱可以使一个人无法解决机器解决的问题。我们认为明显的答案是否定的,因为解决问题并不意味着意识。因此,我们将在本文中争论出惊人的意识和至少计算智力是独立的,以及为什么机器不具有惊人意识,尽管它们可能会发展出与人类相比更高的计算智力。为此,我们尝试制定计算智能的客观度量,并研究其在人类,动物和机器中的表现。类似地,我们将惊人的意识研究为二分法变量,以及它在人,动物和机器中的分布方式。由于现象意识和计算智力是独立的,因此这一事实对社会具有关键意义,我们在这项工作中也分析了这一事实。
translated by 谷歌翻译
This short paper compiles the big ideas behind some philosophical views, definitions, and examples of causality. This collection spans the realms of the four commonly adopted approaches to causality: Humes regularity, counterfactual, manipulation, and mechanisms. This short review is motivated by presenting simplified views and definitions and then supplements them with examples from various fields, including economics, education, medicine, politics, physics, and engineering. It is the hope that this short review comes in handy for new and interested readers with little knowledge of causality and causal inference.
translated by 谷歌翻译
在流行媒体中,人造代理商的意识出现与同时实现人类或超人水平智力的那些相同的代理之间通常存在联系。在这项工作中,我们探讨了意识和智力之间这种看似直观的联系的有效性和潜在应用。我们通过研究与三种当代意识功能理论相关的认知能力:全球工作空间理论(GWT),信息生成理论(IGT)和注意力模式理论(AST)。我们发现,这三种理论都将有意识的功能专门与人类领域将军智力的某些方面联系起来。有了这个见解,我们转向人工智能领域(AI),发现尽管远未证明一般智能,但许多最先进的深度学习方法已经开始纳入三个功能的关键方面理论。确定了这一趋势后,我们以人类心理时间旅行的激励例子来提出方式,其中三种理论中每种理论的见解都可以合并为一个单一的统一和可实施的模型。鉴于三种功能理论中的每一种都可以通过认知能力来实现这一可能,因此,具有精神时间旅行的人造代理不仅具有比当前方法更大的一般智力,而且还与我们当前对意识功能作用的理解更加一致在人类中,这使其成为AI研究的有希望的近期目标。
translated by 谷歌翻译
我们基于从多个数据集的合并信息介绍了一种反事实推断的方法。我们考虑了统计边际问题的因果重新重新制定:鉴于边际结构因果模型(SCM)的集合在不同但重叠的变量集上,请确定与边际相反一致的关节SCMS集。我们使用响应函数配方对分类SCM进行了形式化这种方法,并表明它降低了允许的边际和关节SCM的空间。因此,我们的工作通过其他变量突出了一种通过其他变量的新模式,与统计数据相反。
translated by 谷歌翻译
可解释的人工智能和可解释的机器学习是重要性越来越重要的研究领域。然而,潜在的概念仍然难以捉摸,并且缺乏普遍商定的定义。虽然社会科学最近的灵感已经重新分为人类受助人的需求和期望的工作,但该领域仍然错过了具体的概念化。通过审查人类解释性的哲学和社会基础,我们采取措施来解决这一挑战,然后我们转化为技术领域。特别是,我们仔细审查了算法黑匣子的概念,并通过解释过程确定的理解频谱并扩展了背景知识。这种方法允许我们将可解释性(逻辑)推理定义为在某些背景知识下解释的透明洞察(进入黑匣子)的解释 - 这是一个从事在Admoleis中理解的过程。然后,我们采用这种概念化来重新审视透明度和预测权力之间的争议权差异,以及对安特 - 人穴和后宫后解释者的影响,以及可解释性发挥的公平和问责制。我们还讨论机器学习工作流程的组件,可能需要可解释性,从以人为本的可解释性建立一系列思想,重点介绍声明,对比陈述和解释过程。我们的讨论调整并补充目前的研究,以帮助更好地导航开放问题 - 而不是试图解决任何个人问题 - 从而为实现的地面讨论和解释的人工智能和可解释的机器学习的未来进展奠定了坚实的基础。我们结束了我们的研究结果,重新审视了实现所需的算法透明度水平所需的人以人为本的解释过程。
translated by 谷歌翻译