一致性培训已被证明是一个先进的半监督框架,通过实施在不同意见的不同视图上的预测的不变性,实现了医学图像分割任务的有希望的结果。然而,随着模型参数的迭代更新,模型将倾向于达到耦合状态,最终失去利用未标记数据的能力。为了解决这个问题,我们提出了一种基于参数解耦策略的新型半监督分段模型,以鼓励来自不同视图的一致预测。具体地,我们首先采用双分支网络来同时为每个图像产生预测。在培训过程中,我们通过二次余弦距离与两个预测分支参数分离,以构建潜伏空间中的不同视图。基于此,特征提取器被约束以鼓励在多样化特征下由分类器生成的概率图的一致性。在整体训练过程中,特征提取器和分类器的参数通过一致性正则化操作和解耦操作来交替更新,以逐步提高模型的泛化性能。我们的方法在心房细分挑战数据集上实现了最先进的半监督方法,展示了我们框架的有效性。代码可在https://github.com/bx0903/pdc上获得。
translated by 谷歌翻译
Training deep convolutional neural networks usually requires a large amount of labeled data. However, it is expensive and timeconsuming to annotate data for medical image segmentation tasks. In this paper, we present a novel uncertainty-aware semi-supervised framework for left atrium segmentation from 3D MR images. Our framework can effectively leverage the unlabeled data by encouraging consistent predictions of the same input under different perturbations. Concretely, the framework consists of a student model and a teacher model, and the student model learns from the teacher model by minimizing a segmentation loss and a consistency loss with respect to the targets of the teacher model. We design a novel uncertainty-aware scheme to enable the student model to gradually learn from the meaningful and reliable targets by exploiting the uncertainty information. Experiments show that our method achieves high performance gains by incorporating the unlabeled data. Our method outperforms the state-of-the-art semi-supervised methods, demonstrating the potential of our framework for the challenging semi-supervised problems 3 .
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
在本文中,我们提出了一个新型的相互一致性网络(MC-NET+),以有效利用未标记的数据进行半监督的医学图像分割。 MC-NET+模型的动机是通过观察到的,即经过有限注释训练的深模型很容易输出不确定的,易于分类的预测,例如模棱两可的区域(例如,粘合边缘或薄分支)进行医学图像分割。利用这些具有挑战性的样品可以使半监督分割模型训练更有效。因此,我们提出的MC-NET+模型由两个新设计组成。首先,该模型包含一个共享的编码器和多个略有不同的解码器(即使用不同的上采样策略)。计算多个解码器输出的统计差异以表示模型的不确定性,这表明未标记的硬区域。其次,我们在一个解码器的概率输出和其他解码器的软伪标签之间应用了一种新颖的相互一致性约束。通过这种方式,我们最大程度地减少了训练过程中多个输出(即模型不确定性)的差异,并迫使模型在此类具有挑战性的区域中产生不变的结果,旨在使模型训练正规化。我们将MC-NET+模型的细分结果与三个公共医疗数据集中的五种最先进的半监督方法进行了比较。具有两个标准半监督设置的扩展实验证明了我们模型的优越性能,而不是其他方法,这为半监督医学图像分割设定了新的最新技术。我们的代码将在https://github.com/ycwu1997/mc-net上公开发布。
translated by 谷歌翻译
医学图像分析中的自动分割是一个具有挑战性的任务,需要大量手动标记的数据。然而,手动注释的医疗数据通常是费力的,并且大多数现有的基于学习的方法都无法准确地描绘对象边界而没有有效的几何约束。对比学习,自我监督学习的子区域最近被指出在多个应用领域的有希望的方向。在这项工作中,我们提出了一种具有几何约束的新型对比体Voxel-Wise表示蒸馏(CVRD)方法,用于学习具有有限注释的体积医学图像分割的全球局部视觉表示。我们的框架可以通过捕获3D空间上下文和丰富的解剖信息,有效地学习全球和局部特征。具体地,我们引入了一种体素到体积对比算法来学习来自3D图像的全局信息,并建议对局部体素到体素蒸馏进行,以明确地利用嵌入空间中的本地线索。此外,我们将基于弹性交互的主动轮廓模型集成为几何正则化术语,以实现以端到端的学习方式实现快速且可靠的对象划分。结果对心房分割挑战,数据集展示了我们所提出的方案的优势,尤其是在具有非常有限数量的注释数据的设置中。代码将在https://github.com/charlesyou999648/cvrd上获得。
translated by 谷歌翻译
本文为半监督医学图像分割提供了一个简单而有效的两阶段框架。我们的主要洞察力是探索用标记和未标记的(即伪标记)图像的特征表示学习,以增强分段性能。在第一阶段,我们介绍了一种炼层的不确定感知方法,即Aua,以改善产生高质量伪标签的分割性能。考虑到医学图像的固有歧义,Aua自适应地规范了具有低歧义的图像的一致性。为了提高代表学习,我们提出了一种舞台适应性的对比学习方法,包括边界意识的对比损失,以规范第一阶段中标记的图像,并在第二阶段中的原型感知对比损失优化标记和伪标记的图像阶段。边界意识的对比损失仅优化分段边界周围的像素,以降低计算成本。原型感知对比损失通过为每个类构建质心来充分利用标记的图像和伪标记的图像,以减少对比较的计算成本。我们的方法在两个公共医学图像分割基准上实现了最佳结果。值得注意的是,我们的方法在结肠肿瘤分割的骰子上以5.7%的骰子依赖于只有5%标记的图像而表现出5.7%。
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
We propose a novel teacher-student model for semi-supervised multi-organ segmentation. In teacher-student model, data augmentation is usually adopted on unlabeled data to regularize the consistent training between teacher and student. We start from a key perspective that fixed relative locations and variable sizes of different organs can provide distribution information where a multi-organ CT scan is drawn. Thus, we treat the prior anatomy as a strong tool to guide the data augmentation and reduce the mismatch between labeled and unlabeled images for semi-supervised learning. More specifically, we propose a data augmentation strategy based on partition-and-recovery N$^3$ cubes cross- and within- labeled and unlabeled images. Our strategy encourages unlabeled images to learn organ semantics in relative locations from the labeled images (cross-branch) and enhances the learning ability for small organs (within-branch). For within-branch, we further propose to refine the quality of pseudo labels by blending the learned representations from small cubes to incorporate local attributes. Our method is termed as MagicNet, since it treats the CT volume as a magic-cube and $N^3$-cube partition-and-recovery process matches with the rule of playing a magic-cube. Extensive experiments on two public CT multi-organ datasets demonstrate the effectiveness of MagicNet, and noticeably outperforms state-of-the-art semi-supervised medical image segmentation approaches, with +7% DSC improvement on MACT dataset with 10% labeled images.
translated by 谷歌翻译
半监督学习在医疗领域取得了重大进展,因为它减轻了收集丰富的像素的沉重负担,用于针对语义分割任务。现有的半监督方法增强了利用从有限标记数据获得的现有知识从未标记数据提取功能的能力。然而,由于标记数据的稀缺性,模型提取的特征在监督学习中受到限制,并且对未标记数据的预测质量也无法保证。两者都将妨碍一致培训。为此,我们提出了一种新颖的不确定性感知计划,以使模型自动学习地区。具体而言,我们采用Monte Carlo采样作为获得不确定性地图的估计方法,该方法可以作为损失损失的重量,以强制根据监督学习和无监督学习的特征将模型专注于有价值的区域。同时,在后退过程中,我们通过增强不同任务之间的梯度流动,联合无监督和监督损失来加速网络的融合。定量地,我们对三个挑战的医疗数据集进行了广泛的实验。实验结果表明,最先进的对应物的理想改善。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19. However, there are still some challenges for developing AI system. 1) Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint. 2) Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume. 3) The emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multi-scale information along different dimension of input feature maps and impose supervision on multiple predictions from different CNN layers. Second, we assign this MDA-CNN as a basic network into a novel dual multi-scale mean teacher network (DM${^2}$T-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multi-scale information. Our DM${^2}$T-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multi-scale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
translated by 谷歌翻译
最近,已经提出了几种半监督医学图像分割的贝叶斯深度学习方法。尽管他们在医疗基准方面取得了令人鼓舞的结果,但仍然存在一些问题。首先,他们的整体体系结构属于判别模型,因此,在培训的早期阶段,它们仅使用标记的数据进行培训,这可能会使它们过于贴合标记的数据。其次,实际上,它们仅部分基于贝叶斯深度学习,因为它们的整体体系结构不是在贝叶斯框架下设计的。但是,统一贝叶斯观点下的整体体系结构可以使体系结构具有严格的理论依据,因此体系结构的每个部分都可以具有明确的概率解释。因此,为了解决问题,我们提出了一种新的生成贝叶斯深度学习(GBDL)体系结构。 GBDL属于生成模型,其目标是估计输入医疗量及其相应标签的联合分布。估计联合分布隐式涉及数据的分布,因此在培训的早期阶段都可以使用标记和未标记的数据,从而减轻潜在的过度拟合问题。此外,GBDL是在贝叶斯框架下完全设计的,因此我们提供了其完整的贝叶斯配方,这为我们的建筑奠定了理论上的概率基础。广泛的实验表明,我们的GBDL在三个公共医疗数据集上的四个常用评估指标方面优于先前的最新方法。
translated by 谷歌翻译
最近,利用卷积神经网络(CNNS)和变压器的深度学习表明,令人鼓舞的医学图像细分导致结果。但是,他们仍然具有挑战性,以实现有限的培训的良好表现。在这项工作中,我们通过在CNN和变压器之间引入交叉教学,为半监控医学图像分割提供了一个非常简单但有效的框架。具体而言,我们简化了从一致性正则化的经典深度共同训练交叉教学,其中网络的预测用作伪标签,直接端到端监督其他网络。考虑到CNN和变压器之间的学习范例的差异,我们在CNN和变压器之间引入了交叉教学,而不是使用CNNS。在公共基准测试中的实验表明,我们的方法优于八个现有的半监督学习方法,只需更简单的框架。值得注意的是,这项工作可能是第一次尝试将CNN和变压器组合以进行半监督的医学图像分割,并在公共基准上实现有前途的结果。该代码将发布:https://github.com/hilab-git/sl4mis。
translated by 谷歌翻译
半监督分割在医学成像中仍然具有挑战性,因为带注释的医学数据的量通常受到限制,并且在粘合边缘或低对比度区域附近有许多模糊的像素。为了解决这些问题,我们主张首先限制有或没有强大扰动的样品的一致性,以应用足够的平滑度正则化,并进一步鼓励班级分离以利用未标记的模棱两可的像素进行模型培训。特别是,在本文中,我们通过同时探索像素级平滑度和类间的分离,为半监督医学图像分割任务提出了SS-NET。像素级平滑度迫使模型在对抗扰动下产生不变结果。同时,阶层间的分离限制各个类特征应接近其相应的高质量原型,以使每个类别的分布紧凑和单独的不同类别。我们针对公共LA和ACDC数据集的五种最新方法评估了我们的SS-NET。在两个半监督的设置下的实验结果证明了我们提出的SS-NET的优势,在两个数据集上都实现了新的最先进(SOTA)性能。该代码可在https://github.com/ycwu1997/ss-net上找到。
translated by 谷歌翻译
尽管深层模型在医学图像分割中表现出了有希望的性能,但它们在很大程度上依赖大量宣布的数据,这很难访问,尤其是在临床实践中。另一方面,高准确的深层模型通常有大型模型尺寸,从而限制了它们在实际情况下的工作。在这项工作中,我们提出了一个新颖的不对称联合教师框架ACT-NET,以减轻半监督知识蒸馏的昂贵注释和计算成本的负担。我们通过共同教师网络推进教师学习的学习,以通过交替的学生和教师角色来促进从大型模型到小模型的不对称知识蒸馏,从而获得了临床就业的微小但准确的模型。为了验证我们的行动网络的有效性,我们在实验中采用了ACDC数据集进行心脏子结构分段。广泛的实验结果表明,ACT-NET的表现优于其他知识蒸馏方法,并实现无损分割性能,参数少250倍。
translated by 谷歌翻译
强大的语义细分面临的一个普遍挑战是昂贵的数据注释成本。现有的半监督解决方案显示出解决此问题的巨大潜力。他们的关键想法是通过未经监督的数据增加未标记的数据来构建一致性正则化,以进行模型培训。未标记数据的扰动使一致性训练损失使半监督的语义分割受益。但是,这些扰动破坏了图像上下文并引入了不自然的边界,这对语义分割是有害的。此外,广泛采用的半监督学习框架,即均值老师,遭受了绩效限制,因为学生模型最终会收敛于教师模型。在本文中,首先,我们提出了一个友好的可区分几何扭曲,以进行无监督的数据增强。其次,提出了一个新颖的对抗双重学生框架,以从以下两个方面从以下两个方面改善均等老师:(1)双重学生模型是独立学习的,除了稳定约束以鼓励利用模型多样性; (2)对对抗性训练计划适用于学生,并诉诸歧视者以区分无标记数据的可靠伪标签进行自我训练。通过对Pascal VOC2012和CityScapes进行的广泛实验来验证有效性。我们的解决方案可显着提高两个数据集的性能和最先进的结果。值得注意的是,与完全监督相比,我们的解决方案仅使用Pascal VOC2012上的12.5%注释数据获得了73.4%的可比MIOU。我们的代码和模型可在https://github.com/caocong/ads-semiseg上找到。
translated by 谷歌翻译
随着深度卷积神经网络的发展,近年来,医学图像分割取得了一系列突破。但是,高性能卷积神经网络总是意味着许多参数和高计算成本,这将阻碍在临床情况下的应用。同时,大规模注释的医学图像数据集的稀缺性进一步阻碍了高性能网络的应用。为了解决这些问题,我们提出了图形流,即一个全面的知识蒸馏框架,以用于网络效率和注释效率的医学图像分割。具体而言,我们的核心图流动蒸馏将跨层变化的本质从训练有素的繁琐教师网络转移到未经训练的紧凑型学生网络。此外,无监督的解释器模块被整合在一起以净化教师网络的知识,这也对训练程序的稳定也有益。此外,我们通过集成对抗性蒸馏和香草逻辑蒸馏来构建一个统一的蒸馏框架,这可以进一步完善紧凑网络的最终预测。通过不同的教师网络(常规的卷积架构或普遍的变压器体系结构)和学生网络,我们在四个具有不同模态的医学图像数据集(胃癌,Synapse,Busi和CVC-ClinicdB)上进行了广泛的实验。我们证明了我们的重要能力在这些数据集上实现竞争性能的方法。此外,我们证明了图形通过新型半监督范式进行双重有效医学图像分割的有效性。我们的代码将在图流量下可用。
translated by 谷歌翻译
现代深层神经网络在部署到现实世界应用程序时努力转移知识并跨越不同领域的知识。当前,引入了域的概括(DG),以从多个域中学习通用表示,以提高看不见的域的网络泛化能力。但是,以前的DG方法仅关注数据级的一致性方案,而无需考虑不同一致性方案之间的协同正则化。在本文中,我们通过通过协同整合外在的一致性和内在的一致性来提出一个新型的域概括(HCDG)层次一致性框架。特别是对于外部一致性,我们利用跨多个源域的知识来强制数据级的一致性。为了更好地提高这种一致性,我们将新型的高斯混合策略设计为基于傅立叶的数据增强,称为domainup。对于固有的一致性,我们在双重任务方案下对同一实例执行任务级的一致性。我们在两个医学图像分割任务上评估了提出的HCDG框架,即对眼底图像和前列腺MRI分割的视频杯/圆盘分割。广泛的实验结果表明了我们的HCDG框架的有效性和多功能性。
translated by 谷歌翻译
For more clinical applications of deep learning models for medical image segmentation, high demands on labeled data and computational resources must be addressed. This study proposes a coarse-to-fine framework with two teacher models and a student model that combines knowledge distillation and cross teaching, a consistency regularization based on pseudo-labels, for efficient semi-supervised learning. The proposed method is demonstrated on the abdominal multi-organ segmentation task in CT images under the MICCAI FLARE 2022 challenge, with mean Dice scores of 0.8429 and 0.8520 in the validation and test sets, respectively.
translated by 谷歌翻译