Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19. However, there are still some challenges for developing AI system. 1) Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint. 2) Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume. 3) The emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multi-scale information along different dimension of input feature maps and impose supervision on multiple predictions from different CNN layers. Second, we assign this MDA-CNN as a basic network into a novel dual multi-scale mean teacher network (DM${^2}$T-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multi-scale information. Our DM${^2}$T-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multi-scale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
尽管已经开发了疫苗,并且国家疫苗接种率正在稳步提高,但2019年冠状病毒病(COVID-19)仍对世界各地的医疗保健系统产生负面影响。在当前阶段,从CT图像中自动分割肺部感染区域对于诊断和治疗COVID-19至关重要。得益于深度学习技术的发展,已经提出了一些针对肺部感染细分的深度学习解决方案。但是,由于分布分布,复杂的背景干扰和界限模糊,现有模型的准确性和完整性仍然不令人满意。为此,我们在本文中提出了一个边界引导的语义学习网络(BSNET)。一方面,结合顶级语义保存和渐进式语义集成的双分支语义增强模块旨在建模不同的高级特征之间的互补关系,从而促进产生更完整的分割结果。另一方面,提出了镜像对称边界引导模块,以以镜像对称方式准确检测病变区域的边界。公开可用数据集的实验表明,我们的BSNET优于现有的最新竞争对手,并实现了44 fps的实时推理速度。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
Training deep convolutional neural networks usually requires a large amount of labeled data. However, it is expensive and timeconsuming to annotate data for medical image segmentation tasks. In this paper, we present a novel uncertainty-aware semi-supervised framework for left atrium segmentation from 3D MR images. Our framework can effectively leverage the unlabeled data by encouraging consistent predictions of the same input under different perturbations. Concretely, the framework consists of a student model and a teacher model, and the student model learns from the teacher model by minimizing a segmentation loss and a consistency loss with respect to the targets of the teacher model. We design a novel uncertainty-aware scheme to enable the student model to gradually learn from the meaningful and reliable targets by exploiting the uncertainty information. Experiments show that our method achieves high performance gains by incorporating the unlabeled data. Our method outperforms the state-of-the-art semi-supervised methods, demonstrating the potential of our framework for the challenging semi-supervised problems 3 .
translated by 谷歌翻译
培训RGB-D突出物体检测(SOD)的深层模型通常需要大量标记的RGB-D图像。然而,不容易获取RGB-D数据,这限制了RGB-D SOD技术的发展。为了减轻这个问题,我们介绍了双半RGB-D突出物体检测网络(DS-Net),以利用未标记的RGB图像来提高RGB-D显着性检测。我们首先设计了深度去耦卷积神经网络(DDCNN),其包含深度估计分支和显着性检测分支。深度估计分支用RGB-D图像训练,然后用于估计所有未标记的RGB图像的伪深度映射以形成配对数据。显着性检测分支用于熔断RGB特征和深度特征以预测RGB-D显着性。然后,整个DDCNN被分配为师生学生框架中的骨干,用于半监督学习。此外,我们还引入了对未标记数据的中间注意力和显着性图的一致性损失,以及标记数据的监督深度和显着性损失。七种广泛使用的基准数据集上的实验结果表明,我们的DDCNN定量和定性地优于最先进的方法。我们还证明,即使在使用具有伪深度图的RGB图像时,我们的半监控DS-Net也可以进一步提高性能。
translated by 谷歌翻译
在过去的两年中,Covid-19-19的到来引起的动荡继续带来新的挑战。在这次COVID-19大流行期间,需要快速鉴定感染患者和计算机断层扫描(CT)图像中感染区域的特定描述。尽管已迅速建立了深层监督的学习方法,但图像级和像素级标签的稀缺性以及缺乏可解释的透明度仍然阻碍了AI的适用性。我们可以识别受感染的患者并以极端的监督描绘感染吗?半监督的学习表明,在有限的标记数据和足够的未标记数据下,表现出了有希望的表现。受到半监督学习的启发,我们提出了一种模型不可静止的校准伪标记策略,并将其应用于一致性正则化框架下,以生成可解释的识别和描述结果。我们通过有限的标记数据和足够的未标记数据或弱标记数据的组合证明了模型的有效性。广泛的实验表明,我们的模型可以有效利用有限的标记数据,并为临床常规中的决策提供可解释的分类和分割结果。该代码可从https://github.com/ayanglab/xai covid-11获得。
translated by 谷歌翻译
半监督学习在医疗领域取得了重大进展,因为它减轻了收集丰富的像素的沉重负担,用于针对语义分割任务。现有的半监督方法增强了利用从有限标记数据获得的现有知识从未标记数据提取功能的能力。然而,由于标记数据的稀缺性,模型提取的特征在监督学习中受到限制,并且对未标记数据的预测质量也无法保证。两者都将妨碍一致培训。为此,我们提出了一种新颖的不确定性感知计划,以使模型自动学习地区。具体而言,我们采用Monte Carlo采样作为获得不确定性地图的估计方法,该方法可以作为损失损失的重量,以强制根据监督学习和无监督学习的特征将模型专注于有价值的区域。同时,在后退过程中,我们通过增强不同任务之间的梯度流动,联合无监督和监督损失来加速网络的融合。定量地,我们对三个挑战的医疗数据集进行了广泛的实验。实验结果表明,最先进的对应物的理想改善。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
Covid-19的传播给世界带来了巨大的灾难,自动分割感染区域可以帮助医生快速诊断并减少工作量。但是,准确和完整的分割面临一些挑战,例如散射的感染区分布,复杂的背景噪声和模糊的分割边界。为此,在本文中,我们提出了一个新的网络,用于从CT图像(名为BCS-NET)的自动covid-19肺部感染分割,该网络考虑了边界,上下文和语义属性。 BCS-NET遵循编码器架构,更多的设计集中在解码器阶段,该阶段包括三个逐渐边界上下文 - 语义重建(BCSR)块。在每个BCSR块中,注意引导的全局上下文(AGGC)模块旨在通过突出显示重要的空间和边界位置并建模全局上下文依赖性来学习解码器最有价值的编码器功能。此外,语义指南(SG)单元通过在中间分辨率上汇总多规模的高级特征来生成语义指南图来完善解码器特征。广泛的实验表明,我们提出的框架在定性和定量上都优于现有竞争对手。
translated by 谷歌翻译
随着深度卷积神经网络的发展,近年来,医学图像分割取得了一系列突破。但是,高性能卷积神经网络总是意味着许多参数和高计算成本,这将阻碍在临床情况下的应用。同时,大规模注释的医学图像数据集的稀缺性进一步阻碍了高性能网络的应用。为了解决这些问题,我们提出了图形流,即一个全面的知识蒸馏框架,以用于网络效率和注释效率的医学图像分割。具体而言,我们的核心图流动蒸馏将跨层变化的本质从训练有素的繁琐教师网络转移到未经训练的紧凑型学生网络。此外,无监督的解释器模块被整合在一起以净化教师网络的知识,这也对训练程序的稳定也有益。此外,我们通过集成对抗性蒸馏和香草逻辑蒸馏来构建一个统一的蒸馏框架,这可以进一步完善紧凑网络的最终预测。通过不同的教师网络(常规的卷积架构或普遍的变压器体系结构)和学生网络,我们在四个具有不同模态的医学图像数据集(胃癌,Synapse,Busi和CVC-ClinicdB)上进行了广泛的实验。我们证明了我们的重要能力在这些数据集上实现竞争性能的方法。此外,我们证明了图形通过新型半监督范式进行双重有效医学图像分割的有效性。我们的代码将在图流量下可用。
translated by 谷歌翻译
在本文中,我们提出了一个新型的相互一致性网络(MC-NET+),以有效利用未标记的数据进行半监督的医学图像分割。 MC-NET+模型的动机是通过观察到的,即经过有限注释训练的深模型很容易输出不确定的,易于分类的预测,例如模棱两可的区域(例如,粘合边缘或薄分支)进行医学图像分割。利用这些具有挑战性的样品可以使半监督分割模型训练更有效。因此,我们提出的MC-NET+模型由两个新设计组成。首先,该模型包含一个共享的编码器和多个略有不同的解码器(即使用不同的上采样策略)。计算多个解码器输出的统计差异以表示模型的不确定性,这表明未标记的硬区域。其次,我们在一个解码器的概率输出和其他解码器的软伪标签之间应用了一种新颖的相互一致性约束。通过这种方式,我们最大程度地减少了训练过程中多个输出(即模型不确定性)的差异,并迫使模型在此类具有挑战性的区域中产生不变的结果,旨在使模型训练正规化。我们将MC-NET+模型的细分结果与三个公共医疗数据集中的五种最先进的半监督方法进行了比较。具有两个标准半监督设置的扩展实验证明了我们模型的优越性能,而不是其他方法,这为半监督医学图像分割设定了新的最新技术。我们的代码将在https://github.com/ycwu1997/mc-net上公开发布。
translated by 谷歌翻译
胸腔CT上的自动病变分割能够快速定量分析Covid-19感染的肺部受累。然而,获得用于训练分割网络的大量体素级注释是非常昂贵的。因此,我们提出了一种基于密集回归激活地图(DRAM)的弱监督分割方法。大多数弱监督的分割方法接近利用类激活映射(CAM)到本地化对象。但是,由于凸轮培训进行分类,因此它们不会与对象分割精确对齐。相反,我们使用来自培训的分割网络的密集特征生成高分辨率激活映射,以训练为估计每瓣病变百分比。以这种方式,网络可以利用关于所需病变卷的知识。此外,我们提出了一个注意神经网络模块,以优化DRAM,与主要回归任务一起优化。我们在90个科目中评估了我们的算法。结果表明,我们的方法达到了70.2%的骰子系数,显着优于凸轮基基线48.6%。
translated by 谷歌翻译
最近,已经提出了几种半监督医学图像分割的贝叶斯深度学习方法。尽管他们在医疗基准方面取得了令人鼓舞的结果,但仍然存在一些问题。首先,他们的整体体系结构属于判别模型,因此,在培训的早期阶段,它们仅使用标记的数据进行培训,这可能会使它们过于贴合标记的数据。其次,实际上,它们仅部分基于贝叶斯深度学习,因为它们的整体体系结构不是在贝叶斯框架下设计的。但是,统一贝叶斯观点下的整体体系结构可以使体系结构具有严格的理论依据,因此体系结构的每个部分都可以具有明确的概率解释。因此,为了解决问题,我们提出了一种新的生成贝叶斯深度学习(GBDL)体系结构。 GBDL属于生成模型,其目标是估计输入医疗量及其相应标签的联合分布。估计联合分布隐式涉及数据的分布,因此在培训的早期阶段都可以使用标记和未标记的数据,从而减轻潜在的过度拟合问题。此外,GBDL是在贝叶斯框架下完全设计的,因此我们提供了其完整的贝叶斯配方,这为我们的建筑奠定了理论上的概率基础。广泛的实验表明,我们的GBDL在三个公共医疗数据集上的四个常用评估指标方面优于先前的最新方法。
translated by 谷歌翻译
We propose a novel teacher-student model for semi-supervised multi-organ segmentation. In teacher-student model, data augmentation is usually adopted on unlabeled data to regularize the consistent training between teacher and student. We start from a key perspective that fixed relative locations and variable sizes of different organs can provide distribution information where a multi-organ CT scan is drawn. Thus, we treat the prior anatomy as a strong tool to guide the data augmentation and reduce the mismatch between labeled and unlabeled images for semi-supervised learning. More specifically, we propose a data augmentation strategy based on partition-and-recovery N$^3$ cubes cross- and within- labeled and unlabeled images. Our strategy encourages unlabeled images to learn organ semantics in relative locations from the labeled images (cross-branch) and enhances the learning ability for small organs (within-branch). For within-branch, we further propose to refine the quality of pseudo labels by blending the learned representations from small cubes to incorporate local attributes. Our method is termed as MagicNet, since it treats the CT volume as a magic-cube and $N^3$-cube partition-and-recovery process matches with the rule of playing a magic-cube. Extensive experiments on two public CT multi-organ datasets demonstrate the effectiveness of MagicNet, and noticeably outperforms state-of-the-art semi-supervised medical image segmentation approaches, with +7% DSC improvement on MACT dataset with 10% labeled images.
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
Accurate airway extraction from computed tomography (CT) images is a critical step for planning navigation bronchoscopy and quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). The existing methods are challenging to sufficiently segment the airway, especially the high-generation airway, with the constraint of the limited label and cannot meet the clinical use in COPD. We propose a novel two-stage 3D contextual transformer-based U-Net for airway segmentation using CT images. The method consists of two stages, performing initial and refined airway segmentation. The two-stage model shares the same subnetwork with different airway masks as input. Contextual transformer block is performed both in the encoder and decoder path of the subnetwork to finish high-quality airway segmentation effectively. In the first stage, the total airway mask and CT images are provided to the subnetwork, and the intrapulmonary airway mask and corresponding CT scans to the subnetwork in the second stage. Then the predictions of the two-stage method are merged as the final prediction. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analysis demonstrate that our proposed method extracted much more branches and lengths of the tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.
translated by 谷歌翻译
Covid-19已成为全球大流行,仍然对公众产生严重的健康风险。 CT扫描中肺炎病变的准确和有效的细分对于治疗决策至关重要。我们提出了一种使用循环一致生成的对冲网络(循环GaN)的新型无监督方法,其自动化和加速病变描绘过程。工作流程包括肺体积分割,“合成”健康肺一代,感染和健康的图像减法,以及二元病变面膜创造。首先使用预先训练的U-Net划定肺体积,并作为后续网络的输入。开发了循环GaN,以产生来自受感染的肺图像的合成的“健康”肺CT图像。之后,通过从“受感染的”肺CT图像中减去合成的“健康”肺CT图像来提取肺炎病变。然后将中值过滤器和K-Means聚类应用于轮廓的病变。在两个公共数据集(冠状遗传酶和Radiopedia)上验证了自动分割方法。骰子系数分别达到0.748和0.730,用于冠状遗传酶和RadioPedia数据集。同时,对冠纳卡酶数据集的病变分割性的精度和灵敏度为0.813和0.735,以及用于Radiopedia数据集的0.773和0.726。性能与现有的监督分割网络和以前无监督的特性相当。提出的无监督分割方法在自动Covid-19病变描绘中实现了高精度和效率。分割结果可以作为进一步手动修改的基线和病变诊断的质量保证工具。此外,由于其无人自化的性质,结果不受医师经验的影响,否则对监督方法至关重要。
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
由于不规则的形状,正常和感染组织之间的各种尺寸和无法区分的边界,仍然是一种具有挑战性的任务,可以准确地在CT图像上进行Covid-19的感染病变。在本文中,提出了一种新的分段方案,用于通过增强基于编码器 - 解码器架构的不同级别的监督信息和融合多尺度特征映射来感染Covid-19。为此,提出了深入的协作监督(共同监督)计划,以指导网络学习边缘和语义的特征。更具体地,首先设计边缘监控模块(ESM),以通过将边缘监督信息结合到初始阶段的下采样的初始阶段来突出显示低电平边界特征。同时,提出了一种辅助语义监督模块(ASSM)来加强通过将掩码监督信息集成到稍后阶段来加强高电平语义信息。然后,通过使用注意机制来扩展高级和低电平特征映射之间的语义间隙,开发了一种注意融合模块(AFM)以融合不同级别的多个规模特征图。最后,在四个各种Covid-19 CT数据集上证明了所提出的方案的有效性。结果表明,提出的三个模块都是有希望的。基于基线(RESUNT),单独使用ESM,ASSM或AFM可以分别将骰子度量增加1.12 \%,1.95 \%,1.63 \%,而在我们的数据集中,通过将三个模型结合在一起可以上升3.97 \% 。与各个数据集的现有方法相比,所提出的方法可以在某些主要指标中获得更好的分段性能,并可实现最佳的泛化和全面的性能。
translated by 谷歌翻译