随着深度卷积神经网络的发展,近年来,医学图像分割取得了一系列突破。但是,高性能卷积神经网络总是意味着许多参数和高计算成本,这将阻碍在临床情况下的应用。同时,大规模注释的医学图像数据集的稀缺性进一步阻碍了高性能网络的应用。为了解决这些问题,我们提出了图形流,即一个全面的知识蒸馏框架,以用于网络效率和注释效率的医学图像分割。具体而言,我们的核心图流动蒸馏将跨层变化的本质从训练有素的繁琐教师网络转移到未经训练的紧凑型学生网络。此外,无监督的解释器模块被整合在一起以净化教师网络的知识,这也对训练程序的稳定也有益。此外,我们通过集成对抗性蒸馏和香草逻辑蒸馏来构建一个统一的蒸馏框架,这可以进一步完善紧凑网络的最终预测。通过不同的教师网络(常规的卷积架构或普遍的变压器体系结构)和学生网络,我们在四个具有不同模态的医学图像数据集(胃癌,Synapse,Busi和CVC-ClinicdB)上进行了广泛的实验。我们证明了我们的重要能力在这些数据集上实现竞争性能的方法。此外,我们证明了图形通过新型半监督范式进行双重有效医学图像分割的有效性。我们的代码将在图流量下可用。
translated by 谷歌翻译
近年来,深度卷积神经网络在病理学图像分割方面取得了重大进展。然而,病理图像分割遇到困境,其中更高绩效网络通常需要更多的计算资源和存储。由于病理图像的固有高分辨率,这种现象限制了实际场景中的高精度网络的就业。为了解决这个问题,我们提出了一种用于病理胃癌细分的新型跨层相关(COCO)知识蒸馏网络。知识蒸馏,通过从繁琐的网络从知识转移提高紧凑型网络的性能的一般技术。具体而言,我们的Coco Distillnet模拟了不同层之间的通道混合空间相似性的相关性,然后将这些知识从预培训的繁琐的教师网络传送到非培训的紧凑学生网络。此外,我们还利用了对抗性学习策略来进一步提示被称为对抗性蒸馏(AD)的蒸馏程序。此外,为了稳定我们的培训程序,我们利用无监督的释义模块(PM)来提高教师网络中的知识释义。结果,对胃癌细分数据集进行的广泛实验表明了Coco Distillnet的突出能力,实现了最先进的性能。
translated by 谷歌翻译
有效的医疗图像细分旨在通过轻量级实施框架为医学图像提供准确的像素预测。然而,轻量级框架通常无法实现高性能,并且遭受了跨域任务的可概括能力。在本文中,我们提出了一种可推广的知识蒸馏方法,用于良好,有效地分割跨域医学图像。主要是,我们提出了模型特异性的对准网络(MSAN),以提供由预训练的语义自动编码器(P-SAE)正规化的域不变表示。同时,定制的一致性培训(ACT)策略旨在促进MSAN培训。在MSAN中的域不变代表矢量中,我们提出了两个可推广的知识蒸馏方案,双对比度图蒸馏(DCGD)和域不变的交叉蒸馏(DICD)。具体而言,在DCGD中,设计了两种类型的隐式对比图,以从数据分布的角度来表示耦合和耦合语义相关性。在DICD中,来自MSAN的标题交换将两个模型(即教师和学生)的域语义向量(即教师和学生)借给了跨重建功能,这可以在学生模型中实现编码器和解码器的可推广改进。此外,定制了一个名为FR \'Echet语义距离(FSD)的度量,以验证正则化域不变特征的有效性。在肝和视网膜血管分割数据集上进行的广泛实验证明了我们方法的优先级,就轻量级框架的性能和概括而言。
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19. However, there are still some challenges for developing AI system. 1) Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint. 2) Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume. 3) The emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multi-scale information along different dimension of input feature maps and impose supervision on multiple predictions from different CNN layers. Second, we assign this MDA-CNN as a basic network into a novel dual multi-scale mean teacher network (DM${^2}$T-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multi-scale information. Our DM${^2}$T-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multi-scale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
translated by 谷歌翻译
从医用试剂染色图像中分割牙齿斑块为诊断和确定随访治疗计划提供了宝贵的信息。但是,准确的牙菌斑分割是一项具有挑战性的任务,需要识别牙齿和牙齿斑块受到语义腔区域的影响(即,在牙齿和牙齿斑块之间的边界区域中存在困惑的边界)以及实例形状的复杂变化,这些变化均未完全解决。现有方法。因此,我们提出了一个语义分解网络(SDNET),该网络介绍了两个单任务分支,以分别解决牙齿和牙齿斑块的分割,并设计了其他约束,以学习每个分支的特定类别特征,从而促进语义分解并改善该类别的特征牙齿分割的性能。具体而言,SDNET以分裂方式学习了两个单独的分割分支和牙齿的牙齿,以解除它们之间的纠缠关系。指定类别的每个分支都倾向于产生准确的分割。为了帮助这两个分支更好地关注特定类别的特征,进一步提出了两个约束模块:1)通过最大化不同类别表示之间的距离来学习判别特征表示,以了解判别特征表示形式,以减少减少负面影响关于特征提取的语义腔区域; 2)结构约束模块(SCM)通过监督边界感知的几何约束提供完整的结构信息,以提供各种形状的牙菌斑。此外,我们构建了一个大规模的开源染色牙菌斑分割数据集(SDPSEG),该数据集为牙齿和牙齿提供高质量的注释。 SDPSEG数据集的实验结果显示SDNET达到了最新的性能。
translated by 谷歌翻译
整个腹部器官分割起着腹部损伤诊断,放射治疗计划的重要作用,并随访。然而,划定肿瘤学家所有腹部器官手工费时且非常昂贵的。近日,深学习型医学图像分割显示,以减少人工划定努力的潜力,但它仍然需要培训的大型精细注释的数据集。虽然在这个任务很多努力,但仍然覆盖整个腹部区域与整个腹腔脏器分割准确和详细的注解几个大的图像数据集。在这项工作中,我们建立了一个大型的\ textit【W】孔腹部\ textit {} OR甘斯\ textit {d} ataset(\ {textit WORD})的算法研究和临床应用的发展。此数据集包含150个腹部CT体积(30495片),并且每个卷具有16个机关用细像素级注释和涂鸦基于稀疏注释,这可能是与整个腹部器官注释最大数据集。状态的最先进的几个分割方法是在该数据集进行评估。而且,我们还邀请了临床肿瘤学家修改模型预测测量深度学习方法和真实的肿瘤学家之间的差距。我们进一步介绍和评价这一数据集一个新的基于涂鸦,弱监督分割。该工作腹部多器官分割任务提供了新的基准,这些实验可以作为基准对未来的研究和临床应用的发展。 https://github.com/HiLab-git/WORD:代码库和数据集将被释放
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
尽管深层模型在医学图像分割中表现出了有希望的性能,但它们在很大程度上依赖大量宣布的数据,这很难访问,尤其是在临床实践中。另一方面,高准确的深层模型通常有大型模型尺寸,从而限制了它们在实际情况下的工作。在这项工作中,我们提出了一个新颖的不对称联合教师框架ACT-NET,以减轻半监督知识蒸馏的昂贵注释和计算成本的负担。我们通过共同教师网络推进教师学习的学习,以通过交替的学生和教师角色来促进从大型模型到小模型的不对称知识蒸馏,从而获得了临床就业的微小但准确的模型。为了验证我们的行动网络的有效性,我们在实验中采用了ACDC数据集进行心脏子结构分段。广泛的实验结果表明,ACT-NET的表现优于其他知识蒸馏方法,并实现无损分割性能,参数少250倍。
translated by 谷歌翻译
In this paper, we investigate the knowledge distillation strategy for training small semantic segmentation networks by making use of large networks. We start from the straightforward scheme, pixel-wise distillation, which applies the distillation scheme adopted for image classification and performs knowledge distillation for each pixel separately. We further propose to distill the structured knowledge from large networks to small networks, which is motivated by that semantic segmentation is a structured prediction problem. We study two structured distillation schemes: (i) pair-wise distillation that distills the pairwise similarities, and (ii) holistic distillation that uses GAN to distill holistic knowledge. The effectiveness of our knowledge distillation approaches is demonstrated by extensive experiments on three scene parsing datasets: Cityscapes, Camvid and ADE20K.
translated by 谷歌翻译
CT的精确且鲁棒的肺癌分割,即使是靠近纵隔素的CT,也需要更准确地规划和提供放疗和测量治疗反应。因此,我们开发了一种新的跨模型引发蒸馏(CMEDL)方法,使用未配对的CT和MRI扫描,由此信息教师MRI网络引导学生CT网络来提取信号,以提取信号与背景之间的差异。我们的贡献消除了蒸馏方法的两个要求:(i)通过使用图像(i2i)翻译和(ii)通过使用所有网络的并行培训来使用图像的映像(i2i)翻译和(ii)前进的训练。我们的框架使用了端到端培训的未配对I2I翻译,教师和学生分段网络。使用3个分段和2个I2I网络来证明我们框架的架构灵活性。从不同组患者的377ct和82 t2w MRI培训网络,具有独立验证(n = 209肿瘤)和测试(n = 609肿瘤)数据集。网络设计,将MRI与CT信息组合的方法,在信息(MRI至CT)下蒸馏学习,弱(CT至MRI)和平等教师(MRI至MRI)和消融测试。使用骰子相似性(DSC),表面骰子(SDSC)和Hausdorff距离测量精度,并且在95 $ ^ {Th} $百分位数(HD95)。 CMEDL方法显着(P $ <0.001)比具有CT肺肿瘤的信息教师的非CMEDL方法更准确(DSC为0.77与0.73),MRI具有弱大教师(DSC为0.84 vs.0.81) MRI多器官分割,肺肿瘤,等于教师(DSC为0.90与0.88)。 CMEDL还降低了患者间肺肿瘤细分变量。
translated by 谷歌翻译
减少全身CT扫描中患者的辐射暴露引起了医学成像界的广泛关注。鉴于低辐射剂量可能导致噪声和伪像增加,这极大地影响了临床诊断。为了获得高质量的全身低剂量CT(LDCT)图像,以前的基于深度学习的研究工作引入了各种网络架构。然而,大多数这些方法只采用正常剂量CT(NDCT)图像作为地面真理来指导去噪网络的训练。这种简单的限制导致模型效率更低,并使重建的图像遭受过平滑的效果。在本文中,我们提出了一种新的任务内知识转移方法,利用来自NDCT图像的蒸馏知识来帮助LDCT图像上的培训过程。派生架构被称为师生一致性网络(TSC-Net),由教师网络和具有相同架构的学生网络组成。通过中间功能之间的监督,鼓励学生网络模仿教师网络并获得丰富的纹理细节。此外,为了进一步利用CT扫描中包含的信息,介绍了在对比学习时建立的对比正规化机制(CRM).CRM执行将恢复的CT图像拉到NDCT样本,并将远离LDCT样本的遥控器中的遥远空间。此外,基于注意力和可变形卷积机制,我们设计了一种动态增强模块(DEM)以提高网络变换能力。
translated by 谷歌翻译
大型预训练的变压器是现代语义分割基准的顶部,但具有高计算成本和冗长的培训。为了提高这种约束,我们从综合知识蒸馏的角度来研究有效的语义分割,并考虑弥合多源知识提取和特定于变压器特定的斑块嵌入之间的差距。我们提出了基于变压器的知识蒸馏(TransKD)框架,该框架通过蒸馏出大型教师变压器的特征地图和补丁嵌入来学习紧凑的学生变形金刚,绕过长期的预训练过程并将FLOPS降低> 85.0%。具体而言,我们提出了两个基本和两个优化模块:(1)交叉选择性融合(CSF)可以通过通道注意和层次变压器内的特征图蒸馏之间的知识转移; (2)嵌入对齐(PEA)在斑块过程中执行尺寸转换,以促进贴片嵌入蒸馏; (3)全局本地上下文混合器(GL-MIXER)提取了代表性嵌入的全局和局部信息; (4)嵌入助手(EA)是一种嵌入方法,可以无缝地桥接老师和学生模型,并具有老师的渠道数量。关于CityScapes,ACDC和NYUV2数据集的实验表明,TransKD的表现优于最先进的蒸馏框架,并竞争了耗时的预训练方法。代码可在https://github.com/ruipingl/transkd上找到。
translated by 谷歌翻译
知识蒸馏在模型压缩方面取得了显着的成就。但是,大多数现有方法需要原始的培训数据,而实践中的实际数据通常是不可用的,因为隐私,安全性和传输限制。为了解决这个问题,我们提出了一种有条件的生成数据无数据知识蒸馏(CGDD)框架,用于培训有效的便携式网络,而无需任何实际数据。在此框架中,除了使用教师模型中提取的知识外,我们将预设标签作为额外的辅助信息介绍以培训发电机。然后,训练有素的发生器可以根据需要产生指定类别的有意义的培训样本。为了促进蒸馏过程,除了使用常规蒸馏损失,我们将预设标签视为地面真理标签,以便学生网络直接由合成训练样本类别监督。此外,我们强制学生网络模仿教师模型的注意图,进一步提高了其性能。为了验证我们方法的优越性,我们设计一个新的评估度量称为相对准确性,可以直接比较不同蒸馏方法的有效性。培训的便携式网络通过提出的数据无数据蒸馏方法获得了99.63%,99.07%和99.84%的CIFAR10,CIFAR100和CALTECH101的相对准确性。实验结果表明了所提出的方法的优越性。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译