For more clinical applications of deep learning models for medical image segmentation, high demands on labeled data and computational resources must be addressed. This study proposes a coarse-to-fine framework with two teacher models and a student model that combines knowledge distillation and cross teaching, a consistency regularization based on pseudo-labels, for efficient semi-supervised learning. The proposed method is demonstrated on the abdominal multi-organ segmentation task in CT images under the MICCAI FLARE 2022 challenge, with mean Dice scores of 0.8429 and 0.8520 in the validation and test sets, respectively.
translated by 谷歌翻译
大型策划数据集是必要的,但是注释医学图像是一个耗时,费力且昂贵的过程。因此,最近的监督方法着重于利用大量未标记的数据。但是,这样做是一项具有挑战性的任务。为了解决这个问题,我们提出了一种新的3D Cross伪监督(3D-CPS)方法,这是一种基于NNU-NET的半监督网络体系结构,采用交叉伪监督方法。我们设计了一种新的基于NNU-NET的预处理方法,并在推理阶段采用强制间距设置策略来加快推理时间。此外,我们将半监督的损耗重量设置为与每个时期的线性扩展,以防止在早期训练过程中模型从低质量的伪标签中。我们提出的方法在MICCAI Flare2022验证集(20例)上,平均骰子相似系数(DSC)为0.881,平均归一化表面距离(NSD)为0.913。
translated by 谷歌翻译
腹部器官分割具有许多重要的临床应用,例如器官定量,手术计划和疾病诊断。但是,从CT扫描中手动注释器官是耗时且劳动密集型的。半监督的学习表明,通过从大量未标记的图像和有限的标签样本中学习来减轻这一挑战的潜力。在这项工作中,我们遵循自我训练策略,并使用CNN和Transformer使用混合体系结构(PHTRAN),以生成精确的伪标签。之后,我们将标签数据一起介绍给具有轻量级PHTRAN的两阶段分割框架,以提高模型的性能和概括能力,同时保持效率。 Flare2022验证集的实验表明,我们的方法可实现出色的分割性能以及快速和低资源模型的推断。平均DSC和HSD分别为0.8956和0.9316。在我们的开发环境下,平均推理时间为18.62 s,平均最大GPU存储器为1995.04 MB,GPU内存时间曲线下的面积和CPU利用时间曲线下的平均面积为23196.84和319.67。
translated by 谷歌翻译
尽管深层模型在医学图像分割中表现出了有希望的性能,但它们在很大程度上依赖大量宣布的数据,这很难访问,尤其是在临床实践中。另一方面,高准确的深层模型通常有大型模型尺寸,从而限制了它们在实际情况下的工作。在这项工作中,我们提出了一个新颖的不对称联合教师框架ACT-NET,以减轻半监督知识蒸馏的昂贵注释和计算成本的负担。我们通过共同教师网络推进教师学习的学习,以通过交替的学生和教师角色来促进从大型模型到小模型的不对称知识蒸馏,从而获得了临床就业的微小但准确的模型。为了验证我们的行动网络的有效性,我们在实验中采用了ACDC数据集进行心脏子结构分段。广泛的实验结果表明,ACT-NET的表现优于其他知识蒸馏方法,并实现无损分割性能,参数少250倍。
translated by 谷歌翻译
腹部多器官的手动基础真理是劳动密集型的。为了充分利用CT数据,我们开发了基于半监督的双光线UNET。在训练阶段,它由两个光UNET组成,它们通过使用一致的学习来完全使用标签和未标记的数据。此外,引入了可分离的卷积和剩余串联,以降低计算成本。此外,应用了强大的分割损失以提高性能。在推理阶段,仅使用光线UNET,需要低时间成本和更少的GPU存储器利用率。验证集中该方法的平均DSC为0.8718。该代码可在https://github.com/laihaoran/semi-supervisennunet中找到。
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
Training deep convolutional neural networks usually requires a large amount of labeled data. However, it is expensive and timeconsuming to annotate data for medical image segmentation tasks. In this paper, we present a novel uncertainty-aware semi-supervised framework for left atrium segmentation from 3D MR images. Our framework can effectively leverage the unlabeled data by encouraging consistent predictions of the same input under different perturbations. Concretely, the framework consists of a student model and a teacher model, and the student model learns from the teacher model by minimizing a segmentation loss and a consistency loss with respect to the targets of the teacher model. We design a novel uncertainty-aware scheme to enable the student model to gradually learn from the meaningful and reliable targets by exploiting the uncertainty information. Experiments show that our method achieves high performance gains by incorporating the unlabeled data. Our method outperforms the state-of-the-art semi-supervised methods, demonstrating the potential of our framework for the challenging semi-supervised problems 3 .
translated by 谷歌翻译
本文为半监督医学图像分割提供了一个简单而有效的两阶段框架。我们的主要洞察力是探索用标记和未标记的(即伪标记)图像的特征表示学习,以增强分段性能。在第一阶段,我们介绍了一种炼层的不确定感知方法,即Aua,以改善产生高质量伪标签的分割性能。考虑到医学图像的固有歧义,Aua自适应地规范了具有低歧义的图像的一致性。为了提高代表学习,我们提出了一种舞台适应性的对比学习方法,包括边界意识的对比损失,以规范第一阶段中标记的图像,并在第二阶段中的原型感知对比损失优化标记和伪标记的图像阶段。边界意识的对比损失仅优化分段边界周围的像素,以降低计算成本。原型感知对比损失通过为每个类构建质心来充分利用标记的图像和伪标记的图像,以减少对比较的计算成本。我们的方法在两个公共医学图像分割基准上实现了最佳结果。值得注意的是,我们的方法在结肠肿瘤分割的骰子上以5.7%的骰子依赖于只有5%标记的图像而表现出5.7%。
translated by 谷歌翻译
最近,利用卷积神经网络(CNNS)和变压器的深度学习表明,令人鼓舞的医学图像细分导致结果。但是,他们仍然具有挑战性,以实现有限的培训的良好表现。在这项工作中,我们通过在CNN和变压器之间引入交叉教学,为半监控医学图像分割提供了一个非常简单但有效的框架。具体而言,我们简化了从一致性正则化的经典深度共同训练交叉教学,其中网络的预测用作伪标签,直接端到端监督其他网络。考虑到CNN和变压器之间的学习范例的差异,我们在CNN和变压器之间引入了交叉教学,而不是使用CNNS。在公共基准测试中的实验表明,我们的方法优于八个现有的半监督学习方法,只需更简单的框架。值得注意的是,这项工作可能是第一次尝试将CNN和变压器组合以进行半监督的医学图像分割,并在公共基准上实现有前途的结果。该代码将发布:https://github.com/hilab-git/sl4mis。
translated by 谷歌翻译
在本文中,我们提出了一个新型的相互一致性网络(MC-NET+),以有效利用未标记的数据进行半监督的医学图像分割。 MC-NET+模型的动机是通过观察到的,即经过有限注释训练的深模型很容易输出不确定的,易于分类的预测,例如模棱两可的区域(例如,粘合边缘或薄分支)进行医学图像分割。利用这些具有挑战性的样品可以使半监督分割模型训练更有效。因此,我们提出的MC-NET+模型由两个新设计组成。首先,该模型包含一个共享的编码器和多个略有不同的解码器(即使用不同的上采样策略)。计算多个解码器输出的统计差异以表示模型的不确定性,这表明未标记的硬区域。其次,我们在一个解码器的概率输出和其他解码器的软伪标签之间应用了一种新颖的相互一致性约束。通过这种方式,我们最大程度地减少了训练过程中多个输出(即模型不确定性)的差异,并迫使模型在此类具有挑战性的区域中产生不变的结果,旨在使模型训练正规化。我们将MC-NET+模型的细分结果与三个公共医疗数据集中的五种最先进的半监督方法进行了比较。具有两个标准半监督设置的扩展实验证明了我们模型的优越性能,而不是其他方法,这为半监督医学图像分割设定了新的最新技术。我们的代码将在https://github.com/ycwu1997/mc-net上公开发布。
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
语义分割是开发医学图像诊断系统的重要任务。但是,构建注释的医疗数据集很昂贵。因此,在这种情况下,半监督方法很重要。在半监督学习中,标签的质量在模型性能中起着至关重要的作用。在这项工作中,我们提出了一种新的伪标签策略,可提高用于培训学生网络的伪标签的质量。我们遵循多阶段的半监督训练方法,该方法在标记的数据集上训练教师模型,然后使用训练有素的老师将伪标签渲染用于学生培训。通过这样做,伪标签将被更新,并且随着培训的进度更加精确。上一个和我们的方法之间的关键区别在于,我们在学生培训过程中更新教师模型。因此,在学生培训过程中,提高了伪标签的质量。我们还提出了一种简单但有效的策略,以使用动量模型来提高伪标签的质量 - 训练过程中原始模型的慢复制版本。通过应用动量模型与学生培训期间的重新渲染伪标签相结合,我们在五个数据集中平均达到了84.1%的骰子分数(即Kvarsir,CVC-ClinicdB,Etis-laribpolypdb,cvc-colondb,cvc-colondb,cvc-colondb和cvc-300)和CVC-300)只有20%的数据集用作标记数据。我们的结果超过了3%的共同实践,甚至在某些数据集中取得了完全监督的结果。我们的源代码和预培训模型可在https://github.com/sun-asterisk-research/online学习SSL上找到
translated by 谷歌翻译
We propose a novel teacher-student model for semi-supervised multi-organ segmentation. In teacher-student model, data augmentation is usually adopted on unlabeled data to regularize the consistent training between teacher and student. We start from a key perspective that fixed relative locations and variable sizes of different organs can provide distribution information where a multi-organ CT scan is drawn. Thus, we treat the prior anatomy as a strong tool to guide the data augmentation and reduce the mismatch between labeled and unlabeled images for semi-supervised learning. More specifically, we propose a data augmentation strategy based on partition-and-recovery N$^3$ cubes cross- and within- labeled and unlabeled images. Our strategy encourages unlabeled images to learn organ semantics in relative locations from the labeled images (cross-branch) and enhances the learning ability for small organs (within-branch). For within-branch, we further propose to refine the quality of pseudo labels by blending the learned representations from small cubes to incorporate local attributes. Our method is termed as MagicNet, since it treats the CT volume as a magic-cube and $N^3$-cube partition-and-recovery process matches with the rule of playing a magic-cube. Extensive experiments on two public CT multi-organ datasets demonstrate the effectiveness of MagicNet, and noticeably outperforms state-of-the-art semi-supervised medical image segmentation approaches, with +7% DSC improvement on MACT dataset with 10% labeled images.
translated by 谷歌翻译
随着深度卷积神经网络的发展,近年来,医学图像分割取得了一系列突破。但是,高性能卷积神经网络总是意味着许多参数和高计算成本,这将阻碍在临床情况下的应用。同时,大规模注释的医学图像数据集的稀缺性进一步阻碍了高性能网络的应用。为了解决这些问题,我们提出了图形流,即一个全面的知识蒸馏框架,以用于网络效率和注释效率的医学图像分割。具体而言,我们的核心图流动蒸馏将跨层变化的本质从训练有素的繁琐教师网络转移到未经训练的紧凑型学生网络。此外,无监督的解释器模块被整合在一起以净化教师网络的知识,这也对训练程序的稳定也有益。此外,我们通过集成对抗性蒸馏和香草逻辑蒸馏来构建一个统一的蒸馏框架,这可以进一步完善紧凑网络的最终预测。通过不同的教师网络(常规的卷积架构或普遍的变压器体系结构)和学生网络,我们在四个具有不同模态的医学图像数据集(胃癌,Synapse,Busi和CVC-ClinicdB)上进行了广泛的实验。我们证明了我们的重要能力在这些数据集上实现竞争性能的方法。此外,我们证明了图形通过新型半监督范式进行双重有效医学图像分割的有效性。我们的代码将在图流量下可用。
translated by 谷歌翻译
在最近的半监督语义分割方法中,一致性正则化已被广泛研究。从图像,功能和网络扰动中受益,已经实现了出色的性能。为了充分利用这些扰动,在这项工作中,我们提出了一个新的一致性正则化框架,称为相互知识蒸馏(MKD)。我们创新地基于一致性正则化方法,创新了两个辅助均值老师模型。更具体地说,我们使用一位卑鄙的老师生成的伪标签来监督另一个学生网络,以在两个分支之间进行相互知识蒸馏。除了使用图像级强和弱的增强外,我们还采用了特征增强,考虑隐性语义分布来增加对学生的进一步扰动。提出的框架大大增加了训练样本的多样性。公共基准测试的广泛实验表明,我们的框架在各种半监督设置下都优于先前的最先进方法(SOTA)方法。
translated by 谷歌翻译
半监督语义分割的流行方法主要采用了使用卷积神经网络(CNN)(CNN)的统一网络模型,并在应用于输入或模型的小型扰动上实施模型预测的一致性。但是,这种学习范式受到a)基于CNN模型的学习能力有限; b)学习未标记数据的判别特征的能力有限; c)从整个图像中对全球和本地信息的学习有限。在本文中,我们提出了一种新型的半监督学习方法,称为Transformer-CNN队列(TCC),该方法由两个基于视觉变压器(VIT)的学生组成,另一种是基于CNN的学生。我们的方法巧妙地通过伪标记来纳入预测和异质特征空间上的多级一致性正则化,用于未标记的数据。首先,由于VIT学生的输入是图像贴片,因此特征地图提取了编码至关重要的类统计。为此,我们建议首先利用每个学生作为伪标签并生成类吸引功能(CF)映射的班级感知功能一致性蒸馏(CFCD)。然后,它通过学生之间的CF地图传输知识。其次,随着VIT学生对所有层具有更统一的表示,我们提出一致性感知的交叉蒸馏以在类像素方面的预测之间转移知识。我们在CityScapes和Pascal VOC 2012数据集上验证了TCC框架,该数据集大大优于现有的半监督方法。
translated by 谷歌翻译
最近,已经提出了几种半监督医学图像分割的贝叶斯深度学习方法。尽管他们在医疗基准方面取得了令人鼓舞的结果,但仍然存在一些问题。首先,他们的整体体系结构属于判别模型,因此,在培训的早期阶段,它们仅使用标记的数据进行培训,这可能会使它们过于贴合标记的数据。其次,实际上,它们仅部分基于贝叶斯深度学习,因为它们的整体体系结构不是在贝叶斯框架下设计的。但是,统一贝叶斯观点下的整体体系结构可以使体系结构具有严格的理论依据,因此体系结构的每个部分都可以具有明确的概率解释。因此,为了解决问题,我们提出了一种新的生成贝叶斯深度学习(GBDL)体系结构。 GBDL属于生成模型,其目标是估计输入医疗量及其相应标签的联合分布。估计联合分布隐式涉及数据的分布,因此在培训的早期阶段都可以使用标记和未标记的数据,从而减轻潜在的过度拟合问题。此外,GBDL是在贝叶斯框架下完全设计的,因此我们提供了其完整的贝叶斯配方,这为我们的建筑奠定了理论上的概率基础。广泛的实验表明,我们的GBDL在三个公共医疗数据集上的四个常用评估指标方面优于先前的最新方法。
translated by 谷歌翻译
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19. However, there are still some challenges for developing AI system. 1) Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint. 2) Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume. 3) The emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multi-scale information along different dimension of input feature maps and impose supervision on multiple predictions from different CNN layers. Second, we assign this MDA-CNN as a basic network into a novel dual multi-scale mean teacher network (DM${^2}$T-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multi-scale information. Our DM${^2}$T-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multi-scale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
translated by 谷歌翻译