我们提出了一种新型的平行蒙特卡洛树搜索,该搜索具有批处理模拟(PMB)算法,用于加速长马,情节的机器人计划任务。蒙特卡洛树搜索(MCTS)是一种有效的启发式搜索算法,用于解决以下搜索空间的情节决策问题。 PMB利用基于GPU的大规模模拟器,通过批处理执行大量并发模拟来解决计划任务,以解决计划任务,以便对大型的大型成本进行更有效,更准确的评估。动作空间。与串行MCT实现相比,PMB应用于杂物从混乱中的具有挑战性的操纵任务时,具有改进的解决方案质量的速度超过30 \ times $。我们表明,PMB可以直接应用于具有可忽略的SIM到运行差异的真实机器人硬件。可以在https://github.com/arc-l/pmbs上找到补充材料,包括视频。
translated by 谷歌翻译
混乱环境中的机器人操纵通常需要多个对象的复杂和顺序重排,以实现目标对象的所需重新配置。由于在这种情况下涉及复杂的身体互动,基于重新安排的操作仍然仅限于一小部分任务,并且尤其容易受到物理不确定性和感知噪声的影响。本文提出了一个计划框架,该框架利用了基于抽样的计划方法的效率,并通过动态控制计划范围来关闭操作循环。我们的方法交织了计划和执行,以逐步实现操纵目标,同时纠正过程中的任何错误或路径偏差。同时,我们的框架允许在不需要明确的目标配置的情况下定义操纵目标,从而使机器人能够灵活地与所有对象进行交互以促进对目标的操纵。通过在模拟和真实机器人中进行广泛的实验,我们在混乱的环境中评估了三个操纵任务的框架:抓握,重新安置和分类。与两种基线方法相比,我们表明我们的框架可以显着提高计划效率,对身体不确定性的鲁棒性以及在有限时间预算下的任务成功率。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
在密集的混乱中抓住是自动机器人的一项基本技能。但是,在混乱的情况下,拥挤性和遮挡造成了很大的困难,无法在没有碰撞的情况下产生有效的掌握姿势,这会导致低效率和高失败率。为了解决这些问题,我们提出了一个名为GE-GRASP的通用框架,用于在密集的混乱中用于机器人运动计划,在此,我们利用各种动作原始素来遮挡对象去除,并呈现发电机 - 评估器架构以避免空间碰撞。因此,我们的ge-grasp能够有效地抓住密集的杂物中的物体,并有希望的成功率。具体而言,我们定义了三个动作基础:面向目标的抓握,用于捕获,推动和非目标的抓握,以减少拥挤和遮挡。发电机有效地提供了参考空间信息的各种动作候选者。同时,评估人员评估了所选行动原始候选者,其中最佳动作由机器人实施。在模拟和现实世界中进行的广泛实验表明,我们的方法在运动效率和成功率方面优于杂乱无章的最新方法。此外,我们在现实世界中实现了可比的性能,因为在模拟环境中,这表明我们的GE-Grasp具有强大的概括能力。补充材料可在以下网址获得:https://github.com/captainwudaokou/ge-grasp。
translated by 谷歌翻译
非结构化环境中的多步操纵任务对于学习的机器人来说非常具有挑战性。这些任务相互作用,包括可以获得的预期状态,可以实现整体任务和低级推理,以确定哪些行动将产生这些国家。我们提出了一种无模型的深度加强学习方法来学习多步理操作任务。我们介绍了一个基于视觉的模型架构的机器人操纵网络(ROMANNET),以了解动作值函数并预测操纵操作候选。我们定义基于Gaussian(TPG)奖励函数的任务进度,基于导致成功的动作原语的行动和实现整体任务目标的进展来计算奖励。为了平衡探索/剥削的比率,我们介绍了一个损失调整后的探索(LAE)政策,根据亏损估计的Boltzmann分配来确定来自行动候选人的行动。我们通过培训ROMANNET来展示我们方法的有效性,以了解模拟和现实世界中的几个挑战的多步机械管理任务。实验结果表明,我们的方法优于现有的方法,并在成功率和行动效率方面实现了最先进的性能。消融研究表明,TPG和LAE对多个块堆叠的任务特别有益。代码可用:https://github.com/skumra/romannet
translated by 谷歌翻译
机器人经常面临抓住目标对象的情况,但由于其他当前物体阻止了掌握动作。我们提出了一种深入的强化学习方法,以学习掌握和推动政策,以在高度混乱的环境中操纵目标对象以解决这个问题。特别是,提出了双重强化学习模型方法,该方法在处理复杂场景时具有很高的弹性,在模拟环境中使用原始对象平均达到98%的任务完成。为了评估所提出方法的性能,我们在包装对象和一堆对象方案中进行了两组实验集,在模拟中总共进行了1000个测试。实验结果表明,该提出的方法在各种情况下都效果很好,并且表现出了最新的最新方法。演示视频,训练有素的模型和源代码可重复可重复性目的。 https://github.com/kamalnl92/self-superist-learning-for-pushing-and-grasping。
translated by 谷歌翻译
具有通用机器人臂的外星漫游者在月球和行星勘探中具有许多潜在的应用。将自主权引入此类系统是需要增加流浪者可以花费收集科学数据并收集样本的时间的。这项工作调查了深钢筋学习对月球上对象的基于视觉的机器人抓握的适用性。创建了一个具有程序生成数据集的新型模拟环境,以在具有不平衡的地形和严酷照明的非结构化场景中训练代理。然后,采用了无模型的非政治演员 - 批评算法来端对端学习,该策略将紧凑的OCTREE观察结果直接映射到笛卡尔空间中的连续行动。实验评估表明,与传统使用的基于图像的观测值相比,3D数据表示可以更有效地学习操纵技能。域随机化改善了以前看不见的物体和不同照明条件的新场景的学识关系的概括。为此,我们通过评估月球障碍设施中的真实机器人上的训练有素的代理来证明零射击的SIM到现实转移。
translated by 谷歌翻译
非预先预先推动动作有可能从其周围杂波中分割目标物体,以便于靶的机器人抓握。为了解决这个问题,我们利用了一个启发式规则,使目标对象将目标对象移动到工作空间的空白区域,并证明这种简单的启发式规则能够达到分割。此外,我们将这种启发式规则纳入奖励,以便培训更有效的加强学习(RL)代理进行分割。仿真实验表明,这种洞察力会提高性能。最后,我们的结果表明,基于RL的政策隐含地了解与决策方面的类似启发式类似的东西。
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
我们研究机器人如何自主学习需要联合导航和抓握的技能。虽然原则上的加固学习提供自动机器人技能学习,但在实践中,在现实世界中的加固学习是挑战性的,并且往往需要大量的仪器和监督。我们的宗旨是以无论没有人为干预的自主方式,设计用于学习导航和操纵的机器人强化学习系统,在没有人为干预的情况下,在现实的假设下实现持续学习。我们建议的系统relmm,可以在没有任何环境仪器的现实世界平台上不断学习,没有人为干预,而无需访问特权信息,例如地图,对象位置或环境的全局视图。我们的方法采用模块化策略与组件进行操纵和导航,其中操纵政策不确定性驱动导航控制器的探索,操作模块为导航提供奖励。我们在房间清理任务上评估我们的方法,机器人必须导航到并拾取散落在地板上的物品。在掌握课程训练阶段之后,relmm可以在自动真实培训的大约40小时内自动学习导航并完全抓住。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
Both goal-agnostic and goal-oriented tasks have practical value for robotic grasping: goal-agnostic tasks target all objects in the workspace, while goal-oriented tasks aim at grasping pre-assigned goal objects. However, most current grasping methods are only better at coping with one task. In this work, we propose a bifunctional push-grasping synergistic strategy for goal-agnostic and goal-oriented grasping tasks. Our method integrates pushing along with grasping to pick up all objects or pre-assigned goal objects with high action efficiency depending on the task requirement. We introduce a bifunctional network, which takes in visual observations and outputs dense pixel-wise maps of Q values for pushing and grasping primitive actions, to increase the available samples in the action space. Then we propose a hierarchical reinforcement learning framework to coordinate the two tasks by considering the goal-agnostic task as a combination of multiple goal-oriented tasks. To reduce the training difficulty of the hierarchical framework, we design a two-stage training method to train the two types of tasks separately. We perform pre-training of the model in simulation, and then transfer the learned model to the real world without any additional real-world fine-tuning. Experimental results show that the proposed approach outperforms existing methods in task completion rate and grasp success rate with less motion number. Supplementary material is available at https: //github.com/DafaRen/Learning_Bifunctional_Push-grasping_Synergistic_Strategy_for_Goal-agnostic_and_Goal-oriented_Tasks
translated by 谷歌翻译
堆叠提高了架子上的存储效率,但是缺乏可见性和可访问性使机器人难以揭示和提取目标对象的机械搜索问题。在本文中,我们将横向访问机械搜索问题扩展到带有堆叠项目的架子,并引入了两种新颖的政策 - 堆叠场景(DARSS)和Monte Carlo Tree搜索堆叠场景(MCTSSS)的分配区域减少 - 使用Destacking和恢复行动。 MCTSS通过在每个潜在行动后考虑未来的状态来改善先前的LookAhead政策。在1200次模拟和18个物理试验中进行的实验,配备了刀片和吸力杯,这表明命令和重新攻击动作可以揭示目标对象的模拟成功率为82---100%,而在物理实验中获得了66----100%对于搜索密集包装的架子至关重要。在仿真实验中,这两种策略的表现都优于基线,并获得相似的成功率,但与具有完整状态信息的Oracle政策相比采取了更多步骤。在模拟和物理实验中,DARS在中位数步骤中的表现优于MCTSS,以揭示目标,但是MCTSS在物理实验中的成功率更高,表明对感知噪声的稳健性。请参阅https://sites.google.com/berkeley.edu/stax-ray,以获取补充材料。
translated by 谷歌翻译
在现实世界中的机器人在现实环境中的许多可能的应用领域都铰接机器人掌握物体的能力。因此,机器人Grasping多年来一直是有效的研究领域。通过我们的出版物,我们有助于使机器人能够掌握,特别关注垃圾桶采摘应用。垃圾拣选尤其挑战,由于经常杂乱和非结构化的物体排列以及通过简单的顶部掌握的物体的频繁避免的避神。为了解决这些挑战,我们提出了一种基于软演员 - 评论家(SAC)的混合离散调整的完全自我监督的强化学习方法。我们使用参数化运动原语来推动和抓握运动,以便为我们考虑的困难设置启用灵活的适应行为。此外,我们使用数据增强来提高样本效率。我们证明了我们提出的关于具有挑战性的采摘情景的方法,其中平面掌握学习或行动离散化方法会面临很大困难
translated by 谷歌翻译
强化学习是机器人抓握的一种有前途的方法,因为它可以在困难的情况下学习有效的掌握和掌握政策。但是,由于问题的高维度,用精致的机器人手来实现类似人类的操纵能力是具有挑战性的。尽管可以采用奖励成型或专家示范等补救措施来克服这个问题,但它们通常导致过分简化和有偏见的政策。我们介绍了Dext-Gen,这是一种在稀疏奖励环境中灵巧抓握的强化学习框架,适用于各种抓手,并学习无偏见和复杂的政策。通过平滑方向表示实现了抓地力和物体的完全方向控制。我们的方法具有合理的培训时间,并提供了包括所需先验知识的选项。模拟实验证明了框架对不同方案的有效性和适应性。
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
现实的操纵任务要求机器人与具有长时间运动动作序列的环境相互作用。尽管最近出现了深厚的强化学习方法,这是自动化操作行为的有希望的范式,但由于勘探负担,它们通常在长途任务中缺乏。这项工作介绍了操纵原始增强的强化学习(Maple),这是一个学习框架,可通过预定的行为原始库来增强标准强化学习算法。这些行为原始素是专门实现操纵目标(例如抓住和推动)的强大功能模块。为了使用这些异质原始素,我们制定了涉及原语的层次结构策略,并使用输入参数实例化执行。我们证明,枫树的表现优于基线方法,通过一系列模拟的操纵任务的大幅度。我们还量化了学习行为的组成结构,并突出了我们方法将策略转移到新任务变体和物理硬件的能力。视频和代码可从https://ut-aut-autin-rpl.github.io/maple获得
translated by 谷歌翻译
机器人大会发现是一个充满挑战的问题,它生活在资源分配和运动计划的交集中。目的是将一组预定义的对象组合在一起,以形成新事物,同时考虑使用机器人在循环中执行任务。在这项工作中,我们解决了使用一组类似俄罗斯方块的构建块和机器人操纵器完全从头开始构建任意,预定义的目标结构的问题。我们的新型分层方法旨在有效地将整个任务分解为三个可行的水平,这些级别相互受益。在高水平上,我们运行了一个经典的混合企业计划,用于全局优化块类型的选择和块的最终姿势,以重新创建所需的形状。然后利用其输出来有效地指导探索基础强化学习(RL)政策。该RL策略从基于Q的灵活图表中汲取了其概括属性,该属性通过Q-学习学习,可以通过搜索来完善。此外,它说明了结构稳定性和机器人可行性的必要条件,这些条件无法有效地反映在上一层中。最后,掌握和运动计划者将所需的组装命令转换为机器人关节运动。我们证明了我们提出的方法在一组竞争性的模拟RAD环境中的性能,展示现实世界的转移,并与非结构化的端到端方法相比,报告性能和稳健性。视频可从https://sites.google.com/view/rl-meets-milp获得。
translated by 谷歌翻译
行为树(BT)是一种在自主代理中(例如机器人或计算机游戏中的虚拟实体)之间在不同任务之间进行切换的方法。 BT是创建模块化和反应性的复杂系统的一种非常有效的方法。这些属性在许多应用中至关重要,这导致BT从计算机游戏编程到AI和机器人技术的许多分支。在本书中,我们将首先对BTS进行介绍,然后我们描述BTS与早期切换结构的关系,并且在许多情况下如何概括。然后,这些想法被用作一套高效且易于使用的设计原理的基础。安全性,鲁棒性和效率等属性对于自主系统很重要,我们描述了一套使用BTS的状态空间描述正式分析这些系统的工具。借助新的分析工具,我们可以对BTS如何推广早期方法的形式形式化。我们还显示了BTS在自动化计划和机器学习中的使用。最后,我们描述了一组扩展的工具,以捕获随机BT的行为,其中动作的结果由概率描述。这些工具可以计算成功概率和完成时间。
translated by 谷歌翻译