机器人大会发现是一个充满挑战的问题,它生活在资源分配和运动计划的交集中。目的是将一组预定义的对象组合在一起,以形成新事物,同时考虑使用机器人在循环中执行任务。在这项工作中,我们解决了使用一组类似俄罗斯方块的构建块和机器人操纵器完全从头开始构建任意,预定义的目标结构的问题。我们的新型分层方法旨在有效地将整个任务分解为三个可行的水平,这些级别相互受益。在高水平上,我们运行了一个经典的混合企业计划,用于全局优化块类型的选择和块的最终姿势,以重新创建所需的形状。然后利用其输出来有效地指导探索基础强化学习(RL)政策。该RL策略从基于Q的灵活图表中汲取了其概括属性,该属性通过Q-学习学习,可以通过搜索来完善。此外,它说明了结构稳定性和机器人可行性的必要条件,这些条件无法有效地反映在上一层中。最后,掌握和运动计划者将所需的组装命令转换为机器人关节运动。我们证明了我们提出的方法在一组竞争性的模拟RAD环境中的性能,展示现实世界的转移,并与非结构化的端到端方法相比,报告性能和稳健性。视频可从https://sites.google.com/view/rl-meets-milp获得。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
移动操作(MM)系统是在非结构化现实世界环境中扮演个人助理角色的理想候选者。除其他挑战外,MM需要有效协调机器人的实施例,以执行需要移动性和操纵的任务。强化学习(RL)的承诺是将机器人具有自适应行为,但是大多数方法都需要大量的数据来学习有用的控制策略。在这项工作中,我们研究了机器人可及先验在参与者批判性RL方法中的整合,以加速学习和获取任务的MM学习。也就是说,我们考虑了最佳基础位置的问题以及是否激活ARM达到6D目标的后续决定。为此,我们设计了一种新型的混合RL方法,该方法可以共同处理离散和连续的动作,从而诉诸Gumbel-Softmax重新聚集化。接下来,我们使用来自经典方法的操作机器人工作区中的数据训练可及性。随后,我们得出了增强的混合RL(BHYRL),这是一种通过将其建模为残留近似器的总和来学习Q功能的新型算法。每当需要学习新任务时,我们都可以转移我们学到的残差并了解特定于任务的Q功能的组成部分,从而从先前的行为中维护任务结构。此外,我们发现将目标政策与先前的策略正规化产生更多的表达行为。我们评估了我们在达到难度增加和提取任务的模拟方面的方法,并显示了Bhyrl在基线方法上的卓越性能。最后,我们用Bhyrl零转移了我们学到的6D提取政策,以归功于我们的MM机器人Tiago ++。有关更多详细信息和代码发布,请参阅我们的项目网站:irosalab.com/rlmmbp
translated by 谷歌翻译
操纵任务,如装载洗碗机,可以被视为不同对象之间的空间约束和关系序列。我们的目标是通过将操纵作为图表构成操作来发现这些规则,其节点代表了对象和目标等任务相关实体,并呈现了从示范中解决此问题的图形神经网络(GNN)策略架构。在我们的实验中,使用20个专家演示的模仿学习(IL)培训的单个GNN策略可以解决块根,重排和洗碗机加载任务;一旦策略了解了空间结构,它就可以概括到更大数量的对象,目标配置,以及从模拟到现实世界。这些实验表明,图形IL可以解决复杂的长地平衡操作问题而不需要详细的任务描述。视频可以找到:https://youtu.be/poxatdaj7ay。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
非结构化环境中的多步操纵任务对于学习的机器人来说非常具有挑战性。这些任务相互作用,包括可以获得的预期状态,可以实现整体任务和低级推理,以确定哪些行动将产生这些国家。我们提出了一种无模型的深度加强学习方法来学习多步理操作任务。我们介绍了一个基于视觉的模型架构的机器人操纵网络(ROMANNET),以了解动作值函数并预测操纵操作候选。我们定义基于Gaussian(TPG)奖励函数的任务进度,基于导致成功的动作原语的行动和实现整体任务目标的进展来计算奖励。为了平衡探索/剥削的比率,我们介绍了一个损失调整后的探索(LAE)政策,根据亏损估计的Boltzmann分配来确定来自行动候选人的行动。我们通过培训ROMANNET来展示我们方法的有效性,以了解模拟和现实世界中的几个挑战的多步机械管理任务。实验结果表明,我们的方法优于现有的方法,并在成功率和行动效率方面实现了最先进的性能。消融研究表明,TPG和LAE对多个块堆叠的任务特别有益。代码可用:https://github.com/skumra/romannet
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
现实的操纵任务要求机器人与具有长时间运动动作序列的环境相互作用。尽管最近出现了深厚的强化学习方法,这是自动化操作行为的有希望的范式,但由于勘探负担,它们通常在长途任务中缺乏。这项工作介绍了操纵原始增强的强化学习(Maple),这是一个学习框架,可通过预定的行为原始库来增强标准强化学习算法。这些行为原始素是专门实现操纵目标(例如抓住和推动)的强大功能模块。为了使用这些异质原始素,我们制定了涉及原语的层次结构策略,并使用输入参数实例化执行。我们证明,枫树的表现优于基线方法,通过一系列模拟的操纵任务的大幅度。我们还量化了学习行为的组成结构,并突出了我们方法将策略转移到新任务变体和物理硬件的能力。视频和代码可从https://ut-aut-autin-rpl.github.io/maple获得
translated by 谷歌翻译
用于机器人操纵的多进球政策学习具有挑战性。先前的成功使用了对象的基于状态的表示或提供了演示数据来促进学习。在本文中,通过对域的高级离散表示形式进行手工编码,我们表明,可以使用来自像素的Q学习来学习达到数十个目标的策略。代理商将学习重点放在更简单的本地政策上,这些政策是通过在抽象空间中进行计划来对其进行测序的。我们将我们的方法与标准的多目标RL基线以及在具有挑战性的块构造域上利用离散表示的其他方法进行了比较。我们发现我们的方法可以构建一百多个不同的块结构,并证明具有新物体的结构向前转移。最后,我们将所学的政策部署在真正的机器人上的模拟中。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
在现实世界中的机器人在现实环境中的许多可能的应用领域都铰接机器人掌握物体的能力。因此,机器人Grasping多年来一直是有效的研究领域。通过我们的出版物,我们有助于使机器人能够掌握,特别关注垃圾桶采摘应用。垃圾拣选尤其挑战,由于经常杂乱和非结构化的物体排列以及通过简单的顶部掌握的物体的频繁避免的避神。为了解决这些挑战,我们提出了一种基于软演员 - 评论家(SAC)的混合离散调整的完全自我监督的强化学习方法。我们使用参数化运动原语来推动和抓握运动,以便为我们考虑的困难设置启用灵活的适应行为。此外,我们使用数据增强来提高样本效率。我们证明了我们提出的关于具有挑战性的采摘情景的方法,其中平面掌握学习或行动离散化方法会面临很大困难
translated by 谷歌翻译
机器人经常面临抓住目标对象的情况,但由于其他当前物体阻止了掌握动作。我们提出了一种深入的强化学习方法,以学习掌握和推动政策,以在高度混乱的环境中操纵目标对象以解决这个问题。特别是,提出了双重强化学习模型方法,该方法在处理复杂场景时具有很高的弹性,在模拟环境中使用原始对象平均达到98%的任务完成。为了评估所提出方法的性能,我们在包装对象和一堆对象方案中进行了两组实验集,在模拟中总共进行了1000个测试。实验结果表明,该提出的方法在各种情况下都效果很好,并且表现出了最新的最新方法。演示视频,训练有素的模型和源代码可重复可重复性目的。 https://github.com/kamalnl92/self-superist-learning-for-pushing-and-grasping。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
主动同时定位和映射(SLAM)是规划和控制机器人运动以构建周围环境中最准确,最完整的模型的问题。自从三十多年前出现了积极感知的第一项基础工作以来,该领域在不同科学社区中受到了越来越多的关注。这带来了许多不同的方法和表述,并回顾了当前趋势,对于新的和经验丰富的研究人员来说都是非常有价值的。在这项工作中,我们在主动大满贯中调查了最先进的工作,并深入研究了仍然需要注意的公开挑战以满足现代应用程序的需求。为了实现现实世界的部署。在提供了历史观点之后,我们提出了一个统一的问题制定并审查经典解决方案方案,该方案将问题分解为三个阶段,以识别,选择和执行潜在的导航措施。然后,我们分析替代方法,包括基于深入强化学习的信念空间规划和现代技术,以及审查有关多机器人协调的相关工作。该手稿以讨论新的研究方向的讨论,解决可再现的研究,主动的空间感知和实际应用,以及其他主题。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译
长期的Horizo​​n机器人学习任务稀疏的奖励对当前的强化学习算法构成了重大挑战。使人类能够学习挑战的控制任务的关键功能是,他们经常获得专家干预,使他们能够在掌握低级控制动作之前了解任务的高级结构。我们为利用专家干预来解决长马增强学习任务的框架。我们考虑\ emph {选项模板},这是编码可以使用强化学习训练的潜在选项的规格。我们将专家干预提出,因为允许代理商在学习实施之前执行选项模板。这使他们能够使用选项,然后才能为学习成本昂贵的资源学习。我们在三个具有挑战性的强化学习问题上评估了我们的方法,这表明它的表现要优于最先进的方法。训练有素的代理商和我们的代码视频可以在以下网址找到:https://sites.google.com/view/stickymittens
translated by 谷歌翻译
We study the problem of learning online packing skills for irregular 3D shapes, which is arguably the most challenging setting of bin packing problems. The goal is to consecutively move a sequence of 3D objects with arbitrary shapes into a designated container with only partial observations of the object sequence. Meanwhile, we take physical realizability into account, involving physics dynamics and constraints of a placement. The packing policy should understand the 3D geometry of the object to be packed and make effective decisions to accommodate it in the container in a physically realizable way. We propose a Reinforcement Learning (RL) pipeline to learn the policy. The complex irregular geometry and imperfect object placement together lead to huge solution space. Direct training in such space is prohibitively data intensive. We instead propose a theoretically-provable method for candidate action generation to reduce the action space of RL and the learning burden. A parameterized policy is then learned to select the best placement from the candidates. Equipped with an efficient method of asynchronous RL acceleration and a data preparation process of simulation-ready training sequences, a mature packing policy can be trained in a physics-based environment within 48 hours. Through extensive evaluation on a variety of real-life shape datasets and comparisons with state-of-the-art baselines, we demonstrate that our method outperforms the best-performing baseline on all datasets by at least 12.8% in terms of packing utility.
translated by 谷歌翻译
Building an AI agent that can design on its own has been a goal since the 1980s. Recently, deep learning has shown the ability to learn from large-scale data, enabling significant advances in data-driven design. However, learning over prior data limits us only to solve problems that have been solved before and biases data-driven learning towards existing solutions. The ultimate goal for a design agent is the ability to learn generalizable design behavior in a problem space without having seen it before. We introduce a self-learning agent framework in this work that achieves this goal. This framework integrates a deep policy network with a novel tree search algorithm, where the tree search explores the problem space, and the deep policy network leverages self-generated experience to guide the search further. This framework first demonstrates an ability to discover high-performing generative strategies without any prior data, and second, it illustrates a zero-shot generalization of generative strategies across various unseen boundary conditions. This work evaluates the effectiveness and versatility of the framework by solving multiple versions of two engineering design problems without retraining. Overall, this paper presents a methodology to self-learn high-performing and generalizable problem-solving behavior in an arbitrary problem space, circumventing the needs for expert data, existing solutions, and problem-specific learning.
translated by 谷歌翻译