用于机器人操纵的多进球政策学习具有挑战性。先前的成功使用了对象的基于状态的表示或提供了演示数据来促进学习。在本文中,通过对域的高级离散表示形式进行手工编码,我们表明,可以使用来自像素的Q学习来学习达到数十个目标的策略。代理商将学习重点放在更简单的本地政策上,这些政策是通过在抽象空间中进行计划来对其进行测序的。我们将我们的方法与标准的多目标RL基线以及在具有挑战性的块构造域上利用离散表示的其他方法进行了比较。我们发现我们的方法可以构建一百多个不同的块结构,并证明具有新物体的结构向前转移。最后,我们将所学的政策部署在真正的机器人上的模拟中。
translated by 谷歌翻译
已证明无模型的策略学习能够学习操纵政策,可以使用单步操作原始人来解决长期的视野任务。但是,培训这些政策是一个耗时的过程,需要大量数据。我们提出了局部动力学模型(LDM),该模型有效地学习了这些操纵原始基底的状态转换函数。通过将LDM与无模型的政策学习相结合,我们可以学习可以使用一步lookahead计划来解决复杂的操纵任务的政策。我们表明,LDM既是样本效率更高又胜过其他模型体系结构。与计划结合使用时,我们可以在模拟中的几项具有挑战性的操纵任务上胜过其他基于模型和模型的政策。
translated by 谷歌翻译
非结构化环境中的多步操纵任务对于学习的机器人来说非常具有挑战性。这些任务相互作用,包括可以获得的预期状态,可以实现整体任务和低级推理,以确定哪些行动将产生这些国家。我们提出了一种无模型的深度加强学习方法来学习多步理操作任务。我们介绍了一个基于视觉的模型架构的机器人操纵网络(ROMANNET),以了解动作值函数并预测操纵操作候选。我们定义基于Gaussian(TPG)奖励函数的任务进度,基于导致成功的动作原语的行动和实现整体任务目标的进展来计算奖励。为了平衡探索/剥削的比率,我们介绍了一个损失调整后的探索(LAE)政策,根据亏损估计的Boltzmann分配来确定来自行动候选人的行动。我们通过培训ROMANNET来展示我们方法的有效性,以了解模拟和现实世界中的几个挑战的多步机械管理任务。实验结果表明,我们的方法优于现有的方法,并在成功率和行动效率方面实现了最先进的性能。消融研究表明,TPG和LAE对多个块堆叠的任务特别有益。代码可用:https://github.com/skumra/romannet
translated by 谷歌翻译
强化学习可以培训有效执行复杂任务的政策。然而,对于长地平线任务,这些方法的性能与地平线脱落,通常需要推理和构成较低级别的技能。等级强化学习旨在通过为行动抽象提供一组低级技能来实现这一点。通过抽象空间状态,层次结构也可以进一步提高这一点。我们对适当的状态抽象应取决于可用的较低级别策略的功能。我们提出了价值函数空间:通过使用与每个较低级别的技能对应的值函数来产生这种表示的简单方法。这些价值函数捕获场景的可取性,从而形成了紧凑型摘要任务相关信息的表示,并强大地忽略了分散的人。迷宫解决和机器人操纵任务的实证评估表明,我们的方法提高了长地平的性能,并且能够比替代的无模型和基于模型的方法能够更好的零拍泛化。
translated by 谷歌翻译
通过稀疏奖励的环境中的深度加强学习学习机器人操纵是一项具有挑战性的任务。在本文中,我们通过引入虚构对象目标的概念来解决这个问题。对于给定的操纵任务,首先通过物理逼真的模拟训练感兴趣的对象以达到自己的目标位置,而不会被操纵。然后利用对象策略来构建可编征物体轨迹的预测模型,该轨迹提供具有逐步更加困难的对象目标的机器人来达到训练期间的课程。所提出的算法,遵循对象(FO),已经在需要增加探索程度的7个Mujoco环境中进行评估,并且与替代算法相比,取得了更高的成功率。在特别具有挑战性的学习场景中,例如当物体的初始和目标位置相隔甚远,我们的方法仍然可以学习政策,而竞争方法目前失败。
translated by 谷歌翻译
Dealing with sparse rewards is one of the biggest challenges in Reinforcement Learning (RL). We present a novel technique called Hindsight Experience Replay which allows sample-efficient learning from rewards which are sparse and binary and therefore avoid the need for complicated reward engineering. It can be combined with an arbitrary off-policy RL algorithm and may be seen as a form of implicit curriculum. We demonstrate our approach on the task of manipulating objects with a robotic arm. In particular, we run experiments on three different tasks: pushing, sliding, and pick-and-place, in each case using only binary rewards indicating whether or not the task is completed. Our ablation studies show that Hindsight Experience Replay is a crucial ingredient which makes training possible in these challenging environments. We show that our policies trained on a physics simulation can be deployed on a physical robot and successfully complete the task. The video presenting our experiments is available at https://goo.gl/SMrQnI.
translated by 谷歌翻译
通过加强学习(RL)掌握机器人操纵技巧通常需要设计奖励功能。该地区的最新进展表明,使用稀疏奖励,即仅在成功完成任务时奖励代理,可能会导致更好的政策。但是,在这种情况下,国家行动空间探索更困难。最近的RL与稀疏奖励学习的方法已经为任务提供了高质量的人类演示,但这些可能是昂贵的,耗时甚至不可能获得的。在本文中,我们提出了一种不需要人类示范的新颖有效方法。我们观察到,每个机器人操纵任务都可以被视为涉及从被操纵对象的角度来看运动的任务,即,对象可以了解如何自己达到目标状态。为了利用这个想法,我们介绍了一个框架,最初使用现实物理模拟器获得对象运动策略。然后,此策略用于生成辅助奖励,称为模拟的机器人演示奖励(SLDRS),使我们能够学习机器人操纵策略。拟议的方法已在增加复杂性的13个任务中进行了评估,与替代算法相比,可以实现更高的成功率和更快的学习率。 SLDRS对多对象堆叠和非刚性物体操作等任务特别有益。
translated by 谷歌翻译
虽然现代政策优化方法可以从感官数据进行复杂的操作,但他们对延长时间的地平线和多个子目标的问题挣扎。另一方面,任务和运动计划(夯实)方法规模缩放到长视野,但它们是计算昂贵的并且需要精确跟踪世界状态。我们提出了一种借鉴两种方法的方法:我们训练一项政策来模仿夯实求解器的输出。这产生了一种前馈策略,可以从感官数据完成多步任务。首先,我们构建一个异步分布式夯实求解器,可以快速产生足够的监督数据以进行模仿学习。然后,我们提出了一种分层策略架构,让我们使用部分训练的控制策略来加速夯实求解器。在具有7-自由度的机器人操纵任务中,部分训练有素的策略将规划所需的时间减少到2.6倍。在这些任务中,我们可以学习一个解决方案4对象拣选任务88%的策略从对象姿态观测和解决机器人9目标基准79%从RGB图像的时间(取平均值)跨越9个不同的任务)。
translated by 谷歌翻译
长期的Horizo​​n机器人学习任务稀疏的奖励对当前的强化学习算法构成了重大挑战。使人类能够学习挑战的控制任务的关键功能是,他们经常获得专家干预,使他们能够在掌握低级控制动作之前了解任务的高级结构。我们为利用专家干预来解决长马增强学习任务的框架。我们考虑\ emph {选项模板},这是编码可以使用强化学习训练的潜在选项的规格。我们将专家干预提出,因为允许代理商在学习实施之前执行选项模板。这使他们能够使用选项,然后才能为学习成本昂贵的资源学习。我们在三个具有挑战性的强化学习问题上评估了我们的方法,这表明它的表现要优于最先进的方法。训练有素的代理商和我们的代码视频可以在以下网址找到:https://sites.google.com/view/stickymittens
translated by 谷歌翻译
目标条件层次结构增强学习(HRL)是扩大强化学习(RL)技术的有前途的方法。但是,由于高级的动作空间,即目标空间很大。在大型目标空间中进行搜索对于高级子观念和低级政策学习都构成了困难。在本文中,我们表明,可以使用邻接约束来限制从整个目标空间到当前状态的$ k $步骤相邻区域的高级动作空间,从而有效缓解此问题。从理论上讲,我们证明在确定性的马尔可夫决策过程(MDP)中,所提出的邻接约束保留了最佳的层次结构策略,而在随机MDP中,邻接约束诱导了由MDP的过渡结构确定的有界状态价值次数。我们进一步表明,可以通过培训可以区分邻近和非贴种亚目标的邻接网络来实际实现此约束。对离散和连续控制任务的实验结果,包括挑战性的机器人运动和操纵任务,表明合并邻接性约束可显着提高最先进的目标条件条件的HRL方法的性能。
translated by 谷歌翻译
长摩根和包括一系列隐性子任务的日常任务仍然在离线机器人控制中构成了重大挑战。尽管许多先前的方法旨在通过模仿和离线增强学习的变体来解决这种设置,但学习的行为通常是狭窄的,并且经常努力实现可配置的长匹配目标。由于这两个范式都具有互补的优势和劣势,因此我们提出了一种新型的层次结构方法,结合了两种方法的优势,以从高维相机观察中学习任务无关的长胜压策略。具体而言,我们结合了一项低级政策,该政策通过模仿学习和从离线强化学习中学到的高级政策学习潜在的技能,以促进潜在的行为先验。各种模拟和真实机器人控制任务的实验表明,我们的配方使以前看不见的技能组合能够通过“缝制”潜在技能通过目标链条,并在绩效上提高绩效的顺序,从而实现潜在的目标。艺术基线。我们甚至还学习了一个多任务视觉运动策略,用于现实世界中25个不同的操纵任务,这既优于模仿学习和离线强化学习技术。
translated by 谷歌翻译
现实的操纵任务要求机器人与具有长时间运动动作序列的环境相互作用。尽管最近出现了深厚的强化学习方法,这是自动化操作行为的有希望的范式,但由于勘探负担,它们通常在长途任务中缺乏。这项工作介绍了操纵原始增强的强化学习(Maple),这是一个学习框架,可通过预定的行为原始库来增强标准强化学习算法。这些行为原始素是专门实现操纵目标(例如抓住和推动)的强大功能模块。为了使用这些异质原始素,我们制定了涉及原语的层次结构策略,并使用输入参数实例化执行。我们证明,枫树的表现优于基线方法,通过一系列模拟的操纵任务的大幅度。我们还量化了学习行为的组成结构,并突出了我们方法将策略转移到新任务变体和物理硬件的能力。视频和代码可从https://ut-aut-autin-rpl.github.io/maple获得
translated by 谷歌翻译
强化学习(RL)在机器人中的应用通常受高数据需求的限制。另一方面,许多机器人场景中容易获得近似模型,使基于模型的方法,如规划数据有效的替代方案。尽管如此,这些方法的性能遭受了模型不精确或错误。从这个意义上讲,RL和基于模型的规划者的各个优势和弱点是。在目前的工作中,我们调查如何将两种方法集成到结合其优势的一个框架中。我们介绍了学习执行(L2E),从而利用近似计划中包含的信息学习有关计划的普遍政策。在我们的机器人操纵实验中,与纯RL,纯规划或基线方法相比,L2E在结合学习和规划的基线方法时表现出增加的性能。
translated by 谷歌翻译
通过加强学习(RL)解决机器人导航任务是由于其稀疏奖励和长决策范围自然而挑战。但是,在许多导航任务中,可以使用高级(HL)任务表示,如粗略楼层。以前的工作通过HL表示中的路径规划组成的层次方法和使用从计划导出的子目标来指导源任务中的RL策略的子目标来证明了高效的学习。然而,这些方法通常忽略计划期间机器人的复杂动态和子最优的子目标达到能力。通过提出利用用于HL代表的培训计划政策的新型分层框架,这项工作克服了这些限制。因此,可以利用收集的卷展数据来学习机器人能力和环境条件。我们专门以学习的转换模型(VI-RL)为基础介绍一个规划策略。在模拟机器人导航任务中,VI-RL对Vanilla RL的一致强烈改善,与单个布局的单个布局有关,但更广泛适用于多个布局,并且与停车处的可训练HL路径规划基准相提并论具有困难的非完全动态的任务,其中它显示了显着的改进。
translated by 谷歌翻译
等级强化学习(HRL)对挑战长地平线任务的采样有效学习具有巨大潜力。特别是,让更高的级别将子站分配给较低级别​​,以便在难题上快速学习。然而,这种基于基于亚级的方法是设计的静态强化学习环境,从而与超出了代理的立即控制的动态元素,即使它们在现实世界中普遍存在。在本文中,我们使用定时子站(HITS)引入分层加强学习,这是一个HRL算法,使代理能够通过不仅指定要达到目标状态而且何时来调整其对动态环境的时序。我们讨论如何在这种定时的子原方面与较低级别进行通信导致更高水平的更稳定的学习问题。我们在一系列标准基准和三个新的挑战动态强化学习环境中的实验表明,我们的方法能够采用样本高效的学习,其中现有的最先进的基于亚群的HRL方法未能学习稳定的解决方案。
translated by 谷歌翻译
Hierarchical Reinforcement Learning (HRL) algorithms have been demonstrated to perform well on high-dimensional decision making and robotic control tasks. However, because they solely optimize for rewards, the agent tends to search the same space redundantly. This problem reduces the speed of learning and achieved reward. In this work, we present an Off-Policy HRL algorithm that maximizes entropy for efficient exploration. The algorithm learns a temporally abstracted low-level policy and is able to explore broadly through the addition of entropy to the high-level. The novelty of this work is the theoretical motivation of adding entropy to the RL objective in the HRL setting. We empirically show that the entropy can be added to both levels if the Kullback-Leibler (KL) divergence between consecutive updates of the low-level policy is sufficiently small. We performed an ablative study to analyze the effects of entropy on hierarchy, in which adding entropy to high-level emerged as the most desirable configuration. Furthermore, a higher temperature in the low-level leads to Q-value overestimation and increases the stochasticity of the environment that the high-level operates on, making learning more challenging. Our method, SHIRO, surpasses state-of-the-art performance on a range of simulated robotic control benchmark tasks and requires minimal tuning.
translated by 谷歌翻译
人类通常通过将它们分解为更容易的子问题,然后结合子问题解决方案来解决复杂的问题。这种类型的组成推理允许在解决共享一部分基础构图结构的未来任务时重复使用子问题解决方案。在持续或终身的强化学习(RL)设置中,将知识分解为可重复使用的组件的能力将使代理通过利用积累的组成结构来快速学习新的RL任务。我们基于神经模块探索一种特定形式的组成形式,并提出了一组RL问题,可以直观地接受组成溶液。从经验上讲,我们证明了神经组成确实捕获了问题空间的基本结构。我们进一步提出了一种构图终身RL方法,该方法利用累积的神经成分来加速学习未来任务的学习,同时通过离线RL通过离线RL保留以前的RL,而不是重播经验。
translated by 谷歌翻译
Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.
translated by 谷歌翻译
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
translated by 谷歌翻译
The ability to effectively reuse prior knowledge is a key requirement when building general and flexible Reinforcement Learning (RL) agents. Skill reuse is one of the most common approaches, but current methods have considerable limitations.For example, fine-tuning an existing policy frequently fails, as the policy can degrade rapidly early in training. In a similar vein, distillation of expert behavior can lead to poor results when given sub-optimal experts. We compare several common approaches for skill transfer on multiple domains including changes in task and system dynamics. We identify how existing methods can fail and introduce an alternative approach to mitigate these problems. Our approach learns to sequence existing temporally-extended skills for exploration but learns the final policy directly from the raw experience. This conceptual split enables rapid adaptation and thus efficient data collection but without constraining the final solution.It significantly outperforms many classical methods across a suite of evaluation tasks and we use a broad set of ablations to highlight the importance of differentc omponents of our method.
translated by 谷歌翻译