混乱环境中的机器人操纵通常需要多个对象的复杂和顺序重排,以实现目标对象的所需重新配置。由于在这种情况下涉及复杂的身体互动,基于重新安排的操作仍然仅限于一小部分任务,并且尤其容易受到物理不确定性和感知噪声的影响。本文提出了一个计划框架,该框架利用了基于抽样的计划方法的效率,并通过动态控制计划范围来关闭操作循环。我们的方法交织了计划和执行,以逐步实现操纵目标,同时纠正过程中的任何错误或路径偏差。同时,我们的框架允许在不需要明确的目标配置的情况下定义操纵目标,从而使机器人能够灵活地与所有对象进行交互以促进对目标的操纵。通过在模拟和真实机器人中进行广泛的实验,我们在混乱的环境中评估了三个操纵任务的框架:抓握,重新安置和分类。与两种基线方法相比,我们表明我们的框架可以显着提高计划效率,对身体不确定性的鲁棒性以及在有限时间预算下的任务成功率。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
In the process of materials discovery, chemists currently need to perform many laborious, time-consuming, and often dangerous lab experiments. To accelerate this process, we propose a framework for robots to assist chemists by performing lab experiments autonomously. The solution allows a general-purpose robot to perform diverse chemistry experiments and efficiently make use of available lab tools. Our system can load high-level descriptions of chemistry experiments, perceive a dynamic workspace, and autonomously plan the required actions and motions to perform the given chemistry experiments with common tools found in the existing lab environment. Our architecture uses a modified PDDLStream solver for integrated task and constrained motion planning, which generates plans and motions that are guaranteed to be safe by preventing collisions and spillage. We present a modular framework that can scale to many different experiments, actions, and lab tools. In this work, we demonstrate the utility of our framework on three pouring skills and two foundational chemical experiments for materials synthesis: solubility and recrystallization. More experiments and updated evaluations can be found at https://ac-rad.github.io/arc-icra2023.
translated by 谷歌翻译
操纵可变形的线性对象(DLOS)在有障碍的受约束环境中实现所需的形状是一项有意义但具有挑战性的任务。对于这项高度约束的任务是必要的;但是,由于规划人员的可变形性质,计划人员需要的准确模型很难获得,并且不可避免的建模错误会显着影响计划结果,如果机器人只是以开环的方式执行计划的路径,则可能导致任务失败。在本文中,我们提出了一个粗到精细的框架,以结合全球计划和局部控制,以进行双臂操纵DLO,能够精确实现所需的配置并避免DLO,机器人和障碍物之间的潜在碰撞。具体而言,全球规划师是指一个简单而有效的DLO能量模型,并计算出一条粗略的途径,以确保任务的可行性。然后,本地控制器遵循该路径作为指导,并通过闭环反馈进一步塑造它,以补偿计划错误并保证任务的准确性。仿真和现实世界实验都表明,我们的框架可以在使用不精确的DLO模型的受约束环境中稳健地实现所需的DLO配置。仅通过计划或控制就无法可靠地实现。
translated by 谷歌翻译
We present a generalised architecture for reactive mobile manipulation while a robot's base is in motion toward the next objective in a high-level task. By performing tasks on-the-move, overall cycle time is reduced compared to methods where the base pauses during manipulation. Reactive control of the manipulator enables grasping objects with unpredictable motion while improving robustness against perception errors, environmental disturbances, and inaccurate robot control compared to open-loop, trajectory-based planning approaches. We present an example implementation of the architecture and investigate the performance on a series of pick and place tasks with both static and dynamic objects and compare the performance to baseline methods. Our method demonstrated a real-world success rate of over 99%, failing in only a single trial from 120 attempts with a physical robot system. The architecture is further demonstrated on other mobile manipulator platforms in simulation. Our approach reduces task time by up to 48%, while also improving reliability, gracefulness, and predictability compared to existing architectures for mobile manipulation. See https://benburgesslimerick.github.io/ManipulationOnTheMove for supplementary materials.
translated by 谷歌翻译
我们提出了一种新型的平行蒙特卡洛树搜索,该搜索具有批处理模拟(PMB)算法,用于加速长马,情节的机器人计划任务。蒙特卡洛树搜索(MCTS)是一种有效的启发式搜索算法,用于解决以下搜索空间的情节决策问题。 PMB利用基于GPU的大规模模拟器,通过批处理执行大量并发模拟来解决计划任务,以解决计划任务,以便对大型的大型成本进行更有效,更准确的评估。动作空间。与串行MCT实现相比,PMB应用于杂物从混乱中的具有挑战性的操纵任务时,具有改进的解决方案质量的速度超过30 \ times $。我们表明,PMB可以直接应用于具有可忽略的SIM到运行差异的真实机器人硬件。可以在https://github.com/arc-l/pmbs上找到补充材料,包括视频。
translated by 谷歌翻译
在密集的混乱中抓住是自动机器人的一项基本技能。但是,在混乱的情况下,拥挤性和遮挡造成了很大的困难,无法在没有碰撞的情况下产生有效的掌握姿势,这会导致低效率和高失败率。为了解决这些问题,我们提出了一个名为GE-GRASP的通用框架,用于在密集的混乱中用于机器人运动计划,在此,我们利用各种动作原始素来遮挡对象去除,并呈现发电机 - 评估器架构以避免空间碰撞。因此,我们的ge-grasp能够有效地抓住密集的杂物中的物体,并有希望的成功率。具体而言,我们定义了三个动作基础:面向目标的抓握,用于捕获,推动和非目标的抓握,以减少拥挤和遮挡。发电机有效地提供了参考空间信息的各种动作候选者。同时,评估人员评估了所选行动原始候选者,其中最佳动作由机器人实施。在模拟和现实世界中进行的广泛实验表明,我们的方法在运动效率和成功率方面优于杂乱无章的最新方法。此外,我们在现实世界中实现了可比的性能,因为在模拟环境中,这表明我们的GE-Grasp具有强大的概括能力。补充材料可在以下网址获得:https://github.com/captainwudaokou/ge-grasp。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
多步兵的操纵任务(例如打开推动的儿童瓶)需要机器人来做出各种计划选择,这些选择受到在任务期间施加力量的要求所影响的各种计划。机器人必须推荐与动作顺序相关的离散和连续选择,例如是否拾取对象以及每个动作的参数,例如如何掌握对象。为了实现计划和执行有力的操纵,我们通过限制了扭矩和摩擦限制,通过拟议的有力的运动链约束来增强现有的任务和运动计划者。在三个领域,打开一个防儿童瓶,扭动螺母并切割蔬菜,我们演示了系统如何从组合组合组合中进行选择。我们还展示了如何使用成本敏感的计划来查找强大的策略和参数物理参数的不确定性。
translated by 谷歌翻译
当机器人计划时,不同的型号可以提供不同水平的忠诚度。分析模型通常很快进行评估,但仅在有限的条件范围内起作用。同时,物理模拟器可以有效地建模对象之间的复杂相互作用,但通常在计算上更昂贵。学习何时在各种模型之间切换可以大大提高计划速度和任务成功的可靠性。在这项工作中,我们学习模型偏差估计器(MDE),以预测现实世界状态与通过过渡模型输出的状态之间的误差。 MDE可用于定义一个模型前提,该模型先决条件描述了哪些过渡是准确建模的。然后,我们提出了一个使用学到的模型先决条件在各种模型之间切换的计划者,以便在准确的条件下使用模型,并在可能的情况下更快地对模型进行优先级排序。我们在两个现实世界任务上评估我们的方法:将杆放入盒子中,将杆放入封闭的抽屉中。
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
我们考虑了一个新的问题,其中多个刚性凸的多边形物体位于从顶部摄像机可见的平面表面上随机放置的位置和方向。目的是使用多对象的按钮有效地将所有对象掌握到垃圾箱中,其中将多个对象推在一起以促进多对象抓握。我们为无摩擦的多对象推格程序提供了必要的条件,并将其应用于新颖的多对象抓紧计划器中的不可接受的grasps。我们发现我们的计划者比Mujoco模拟器基线快19倍。我们还提出了一种使用单对象和多对象抓取对象的选择算法。在将性能与单对象拾取基线进行比较的物理抓握实验中,我们发现无摩擦的多对象握把系统获得了13.6 \%的掌握成功,并且更快的速度为59.9 \%,从212 pph到340 pph。有关视频和代码,请参见\ url {https://sites.google.com/view/multi-object-grasping}。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
6D在杂乱的场景中抓住是机器人操纵中的长期存在。由于状态估计不准确,开环操作管道可能会失败,而大多数端到端的掌握方法尚未缩放到具有障碍物的复杂场景。在这项工作中,我们提出了一种新的杂乱场景掌握的最终学习方法。我们的分层框架基于部分点云观测学习无碰撞目标驱动的抓取性。我们学习嵌入空间来编码培训期间的专家掌握计划和一个变形式自动化器,以在测试时间上采样不同的抓握轨迹。此外,我们培训批评网络的计划选择和选项分类器,用于通过分层加强学习切换到实例掌握策略。我们评估我们的方法并与仿真中的几个基线进行比较,并证明我们的潜在规划可以概括为真实的杂乱场景掌握任务。我们的视频和代码可以在https://sites.google.com/view/latent-grasping中找到。
translated by 谷歌翻译
机器人需要在约束环境(例如架子和橱柜)中操纵物体,以帮助人类在房屋和办公室等日常设置中。这些限制因减少掌握能力而变得难以操纵,因此机器人需要使用非忽视策略来利用对象环境联系来执行操纵任务。为了应对在这种情况下规划和控制接触性富裕行为的挑战,该工作使用混合力量速度控制器(HFVC)作为技能表示和计划的技能序列,并使用学到的先决条件进行了计划。尽管HFVC自然能够实现稳健且合规的富裕行为,但合成它们的求解器传统上依赖于精确的对象模型和对物体姿势的闭环反馈,这些反馈因遮挡而在约束环境中很难获得。我们首先使用HFVC综合框架放松了HFVC对精确模型和反馈的需求,然后学习一个基于点云的前提函数,以对HFVC执行仍将成功地进行分类,尽管建模不正确。最后,我们在基于搜索的任务计划者中使用学到的前提来完成货架域中的接触式操纵任务。我们的方法达到了$ 73.2 \%$的任务成功率,表现优于基线实现的$ 51.5 \%$,而没有学习的先决条件。在模拟中训练了前提函数时,它也可以转移到现实世界中,而无需进行其他微调。
translated by 谷歌翻译
学习灵巧的操纵技巧是计算机图形和机器人技术的长期挑战,尤其是当任务涉及手,工具和物体之间的复杂而微妙的互动时。在本文中,我们专注于基于筷子的对象搬迁任务,这些任务很常见却又要求。成功的筷子技巧的关键是稳定地抓住棍棒,这也支持精致的演习。我们会自动发现贝叶斯优化(BO)和深钢筋学习(DRL)的身体有效的筷子姿势,它适用于多种握把的样式和手工形态,而无需示例数据。作为输入,我们要移动发现的抓紧姿势和所需的对象,我们构建了基于物理的手部控制器,以在两个阶段完成重定位任务。首先,运动轨迹是为筷子合成的,并处于运动计划阶段。我们运动策划者的关键组件包括一个握把模型,以选择用于抓住对象的合适筷子配置,以及一个轨迹优化模块,以生成无碰撞的筷子轨迹。然后,我们再次通过DRL训练基于物理的手部控制器,以跟踪运动计划者产生的所需运动轨迹。我们通过重新定位各种形状和尺寸的对象,以多种诱人的样式和多种手工形态的位置来展示框架的功能。与试图学习基于筷子的技能的香草系统相比,我们的系统实现了更快的学习速度和更好的控制鲁棒性,而无需抓紧姿势优化模块和/或没有运动学运动计划者。
translated by 谷歌翻译
Rearrangement puzzles are variations of rearrangement problems in which the elements of a problem are potentially logically linked together. To efficiently solve such puzzles, we develop a motion planning approach based on a new state space that is logically factored, integrating the capabilities of the robot through factors of simultaneously manipulatable joints of an object. Based on this factored state space, we propose less-actions RRT (LA-RRT), a planner which optimizes for a low number of actions to solve a puzzle. At the core of our approach lies a new path defragmentation method, which rearranges and optimizes consecutive edges to minimize action cost. We solve six rearrangement scenarios with a Fetch robot, involving planar table puzzles and an escape room scenario. LA-RRT significantly outperforms the next best asymptotically-optimal planner by 4.01 to 6.58 times improvement in final action cost.
translated by 谷歌翻译
机器人的大多数对象操纵策略都是基于以下假设:对象是刚性(即具有固定几何形状),并且目标的细节已完全指定(例如,确切的目标姿势)。但是,有许多任务涉及人类环境中的空间关系,这些条件可能难以满足,例如弯曲和将电缆放入未知容器中。为了在非结构化的环境中开发先进的机器人操纵功能,以避免这些假设,我们提出了一个新颖的长马框架,该框架利用了对比计划来寻找有希望的协作行动。使用随机操作收集的仿真数据,我们以对比方式学习一个嵌入模型,该模型从成功的体验中编码时空信息,从而通过在潜在空间中的聚类来促进次目标计划。基于基于KePoint对应的操作参数化,我们为双臂之间的协作设计了领导者追随者控制方案。我们政策的所有模型均经过模拟自动培训,可以直接传输到现实世界环境中。为了验证所提出的框架,我们对模拟和真实环境中的环境和可及性约束,对复杂场景进行了详细的实验研究。
translated by 谷歌翻译
在本文中,我们探讨了机器人是否可以学会重新应用一组多样的物体以实现各种所需的掌握姿势。只要机器人的当前掌握姿势未能执行所需的操作任务,需要重新扫描。具有这种能力的赋予机器人具有在许多领域中的应用,例如制造或国内服务。然而,由于日常物体中的几何形状和状态和行动空间的高维度,这是一个具有挑战性的任务。在本文中,我们提出了一种机器人系统,用于将物体的部分点云和支持环境作为输入,输出序列和放置操作的序列来转换到所需的对象掌握姿势。关键技术包括神经稳定放置预测器,并通过利用和改变周围环境来引发基于图形的解决方案。我们介绍了一个新的和具有挑战性的合成数据集,用于学习和评估所提出的方法。我们展示了我们提出的系统与模拟器和现实世界实验的有效性。我们的项目网页上有更多视频和可视化示例。
translated by 谷歌翻译