当机器人计划时,不同的型号可以提供不同水平的忠诚度。分析模型通常很快进行评估,但仅在有限的条件范围内起作用。同时,物理模拟器可以有效地建模对象之间的复杂相互作用,但通常在计算上更昂贵。学习何时在各种模型之间切换可以大大提高计划速度和任务成功的可靠性。在这项工作中,我们学习模型偏差估计器(MDE),以预测现实世界状态与通过过渡模型输出的状态之间的误差。 MDE可用于定义一个模型前提,该模型先决条件描述了哪些过渡是准确建模的。然后,我们提出了一个使用学到的模型先决条件在各种模型之间切换的计划者,以便在准确的条件下使用模型,并在可能的情况下更快地对模型进行优先级排序。我们在两个现实世界任务上评估我们的方法:将杆放入盒子中,将杆放入封闭的抽屉中。
translated by 谷歌翻译
机器人需要在约束环境(例如架子和橱柜)中操纵物体,以帮助人类在房屋和办公室等日常设置中。这些限制因减少掌握能力而变得难以操纵,因此机器人需要使用非忽视策略来利用对象环境联系来执行操纵任务。为了应对在这种情况下规划和控制接触性富裕行为的挑战,该工作使用混合力量速度控制器(HFVC)作为技能表示和计划的技能序列,并使用学到的先决条件进行了计划。尽管HFVC自然能够实现稳健且合规的富裕行为,但合成它们的求解器传统上依赖于精确的对象模型和对物体姿势的闭环反馈,这些反馈因遮挡而在约束环境中很难获得。我们首先使用HFVC综合框架放松了HFVC对精确模型和反馈的需求,然后学习一个基于点云的前提函数,以对HFVC执行仍将成功地进行分类,尽管建模不正确。最后,我们在基于搜索的任务计划者中使用学到的前提来完成货架域中的接触式操纵任务。我们的方法达到了$ 73.2 \%$的任务成功率,表现优于基线实现的$ 51.5 \%$,而没有学习的先决条件。在模拟中训练了前提函数时,它也可以转移到现实世界中,而无需进行其他微调。
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
混乱环境中的机器人操纵通常需要多个对象的复杂和顺序重排,以实现目标对象的所需重新配置。由于在这种情况下涉及复杂的身体互动,基于重新安排的操作仍然仅限于一小部分任务,并且尤其容易受到物理不确定性和感知噪声的影响。本文提出了一个计划框架,该框架利用了基于抽样的计划方法的效率,并通过动态控制计划范围来关闭操作循环。我们的方法交织了计划和执行,以逐步实现操纵目标,同时纠正过程中的任何错误或路径偏差。同时,我们的框架允许在不需要明确的目标配置的情况下定义操纵目标,从而使机器人能够灵活地与所有对象进行交互以促进对目标的操纵。通过在模拟和真实机器人中进行广泛的实验,我们在混乱的环境中评估了三个操纵任务的框架:抓握,重新安置和分类。与两种基线方法相比,我们表明我们的框架可以显着提高计划效率,对身体不确定性的鲁棒性以及在有限时间预算下的任务成功率。
translated by 谷歌翻译
虽然现代政策优化方法可以从感官数据进行复杂的操作,但他们对延长时间的地平线和多个子目标的问题挣扎。另一方面,任务和运动计划(夯实)方法规模缩放到长视野,但它们是计算昂贵的并且需要精确跟踪世界状态。我们提出了一种借鉴两种方法的方法:我们训练一项政策来模仿夯实求解器的输出。这产生了一种前馈策略,可以从感官数据完成多步任务。首先,我们构建一个异步分布式夯实求解器,可以快速产生足够的监督数据以进行模仿学习。然后,我们提出了一种分层策略架构,让我们使用部分训练的控制策略来加速夯实求解器。在具有7-自由度的机器人操纵任务中,部分训练有素的策略将规划所需的时间减少到2.6倍。在这些任务中,我们可以学习一个解决方案4对象拣选任务88%的策略从对象姿态观测和解决机器人9目标基准79%从RGB图像的时间(取平均值)跨越9个不同的任务)。
translated by 谷歌翻译
为了有效地学习新环境中任务的动态模型,可以调整在类似的源环境中学习的模型。但是,当目标数据集包含动态与源环境大不相同的过渡时,现有的适应方法可能会失败。例如,源环境动力学可能是在自由空间中操纵的绳索,而目标动态可能涉及碰撞和障碍物的变形。我们的关键见解是通过将模型适应仅关注源和目标动力学相似的区域来提高数据效率。在绳索示例中,调整自由空间动力学比调整自由空间动力学的同时学习碰撞动力学所需的数据要少得多。我们提出了一种适应的新方法,该方法可有效适应类似动态的区域。此外,我们将这种适应方法与先前在计划的工作结合使用,并使用不可靠的动态来制定一种称为焦点的数据有效的在线适应方法。我们首先证明,所提出的适应方法在模拟绳索操纵和植物浇水任务上相似动力学区域的预测误差在统计学上显着降低了预测误差。然后,我们展示了一项双层绳索操纵任务,该任务重点是在模拟和现实世界中实现数据效率的在线学习。
translated by 谷歌翻译
Robot learning provides a number of ways to teach robots simple skills, such as grasping. However, these skills are usually trained in open, clutter-free environments, and therefore would likely cause undesirable collisions in more complex, cluttered environments. In this work, we introduce an affordance model based on a graph representation of an environment, which is optimised during deployment to find suitable robot configurations to start a skill from, such that the skill can be executed without any collisions. We demonstrate that our method can generalise a priori acquired skills to previously unseen cluttered and constrained environments, in simulation and in the real world, for both a grasping and a placing task.
translated by 谷歌翻译
物体很少在人类环境中孤立地坐着。因此,我们希望我们的机器人来推理多个对象如何相互关系,以及这些关系在机器人与世界互动时可能会发生变化。为此,我们提出了一个新型的图形神经网络框架,用于多对象操纵,以预测对机器人行动的影响如何变化。我们的模型在部分视图点云上运行,可以推理操作过程中动态交互的多个对象。通过在学习的潜在图嵌入空间中学习动态模型,我们的模型使多步规划可以达到目标目标关系。我们展示了我们的模型纯粹是在模拟中训练的,可以很好地传输到现实世界。我们的计划器使机器人能够使用推送和拾取和地点技能重新排列可变数量的对象。
translated by 谷歌翻译
多步兵的操纵任务(例如打开推动的儿童瓶)需要机器人来做出各种计划选择,这些选择受到在任务期间施加力量的要求所影响的各种计划。机器人必须推荐与动作顺序相关的离散和连续选择,例如是否拾取对象以及每个动作的参数,例如如何掌握对象。为了实现计划和执行有力的操纵,我们通过限制了扭矩和摩擦限制,通过拟议的有力的运动链约束来增强现有的任务和运动计划者。在三个领域,打开一个防儿童瓶,扭动螺母并切割蔬菜,我们演示了系统如何从组合组合组合中进行选择。我们还展示了如何使用成本敏感的计划来查找强大的策略和参数物理参数的不确定性。
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译
我们探索一种新的方法来感知和操纵3D铰接式物体,该物体可以概括地使机器人阐明看不见的对象。我们提出了一个基于视觉的系统,该系统学会预测各种铰接物体的各个部分的潜在运动,以指导系统的下游运动计划以表达对象。为了预测对象运动,我们训练一个神经网络,以输出一个密集的向量场,代表点云中点云中点的点运动方向。然后,我们根据该向量领域部署一个分析运动计划者,以实现产生最大发音的政策。我们完全在模拟中训练视觉系统,并演示了系统在模拟和现实世界中概括的对象实例和新颖类别的能力,并将我们的政策部署在没有任何填充的锯耶机器人上。结果表明,我们的系统在模拟和现实世界实验中都达到了最先进的性能。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
最近的作品表明,如何将大语言模型(LLM)的推理能力应用于自然语言处理以外的领域,例如机器人的计划和互动。这些具体的问题要求代理商了解世界上许多语义方面:可用技能的曲目,这些技能如何影响世界以及对世界的变化如何映射回该语言。在体现环境中规划的LLMS不仅需要考虑要做什么技能,还需要考虑如何以及何时进行操作 - 答案随着时间的推移而变化,以响应代理商自己的选择。在这项工作中,我们调查了在这种体现的环境中使用的LLM在多大程度上可以推论通过自然语言提供的反馈来源,而无需任何其他培训。我们建议,通过利用环境反馈,LLM能够形成内部独白,使他们能够在机器人控制方案中进行更丰富的处理和计划。我们研究了各种反馈来源,例如成功检测,场景描述和人类互动。我们发现,闭环语言反馈显着改善了三个领域的高级指导完成,包括模拟和真实的桌面顶部重新排列任务以及现实世界中厨房环境中的长途移动操作任务。
translated by 谷歌翻译
学习灵巧的操纵技巧是计算机图形和机器人技术的长期挑战,尤其是当任务涉及手,工具和物体之间的复杂而微妙的互动时。在本文中,我们专注于基于筷子的对象搬迁任务,这些任务很常见却又要求。成功的筷子技巧的关键是稳定地抓住棍棒,这也支持精致的演习。我们会自动发现贝叶斯优化(BO)和深钢筋学习(DRL)的身体有效的筷子姿势,它适用于多种握把的样式和手工形态,而无需示例数据。作为输入,我们要移动发现的抓紧姿势和所需的对象,我们构建了基于物理的手部控制器,以在两个阶段完成重定位任务。首先,运动轨迹是为筷子合成的,并处于运动计划阶段。我们运动策划者的关键组件包括一个握把模型,以选择用于抓住对象的合适筷子配置,以及一个轨迹优化模块,以生成无碰撞的筷子轨迹。然后,我们再次通过DRL训练基于物理的手部控制器,以跟踪运动计划者产生的所需运动轨迹。我们通过重新定位各种形状和尺寸的对象,以多种诱人的样式和多种手工形态的位置来展示框架的功能。与试图学习基于筷子的技能的香草系统相比,我们的系统实现了更快的学习速度和更好的控制鲁棒性,而无需抓紧姿势优化模块和/或没有运动学运动计划者。
translated by 谷歌翻译
In the process of materials discovery, chemists currently need to perform many laborious, time-consuming, and often dangerous lab experiments. To accelerate this process, we propose a framework for robots to assist chemists by performing lab experiments autonomously. The solution allows a general-purpose robot to perform diverse chemistry experiments and efficiently make use of available lab tools. Our system can load high-level descriptions of chemistry experiments, perceive a dynamic workspace, and autonomously plan the required actions and motions to perform the given chemistry experiments with common tools found in the existing lab environment. Our architecture uses a modified PDDLStream solver for integrated task and constrained motion planning, which generates plans and motions that are guaranteed to be safe by preventing collisions and spillage. We present a modular framework that can scale to many different experiments, actions, and lab tools. In this work, we demonstrate the utility of our framework on three pouring skills and two foundational chemical experiments for materials synthesis: solubility and recrystallization. More experiments and updated evaluations can be found at https://ac-rad.github.io/arc-icra2023.
translated by 谷歌翻译
在环境抽象中进行高级搜索来指导低水平决策,这是一种有效的方法,是解决连续状态和行动空间中的长途任务的有效方法。最近的工作表明,可以以符号操作员和神经采样器的形式学习使这种二聚体计划的动作抽象,并且鉴于实现已知目标的符号谓词和演示。在这项工作中,我们表明,在动作往往会导致大量谓词发生变化的环境中,现有的方法不足。为了解决这个问题,我们建议学习具有忽略效果的操作员。激发我们方法的关键思想是,对谓词的每一个观察到的变化进行建模是不必要的。唯一需要建模的更改是高级搜索以实现指定目标所需的更改。在实验上,我们表明我们的方法能够学习具有忽略六个混合机器人域效果的操作员,这些企业能够解决一个代理,以解决具有不同初始状态,目标和对象数量的新任务变化,比几个基线要高得多。
translated by 谷歌翻译
行为树(BT)是一种在自主代理中(例如机器人或计算机游戏中的虚拟实体)之间在不同任务之间进行切换的方法。 BT是创建模块化和反应性的复杂系统的一种非常有效的方法。这些属性在许多应用中至关重要,这导致BT从计算机游戏编程到AI和机器人技术的许多分支。在本书中,我们将首先对BTS进行介绍,然后我们描述BTS与早期切换结构的关系,并且在许多情况下如何概括。然后,这些想法被用作一套高效且易于使用的设计原理的基础。安全性,鲁棒性和效率等属性对于自主系统很重要,我们描述了一套使用BTS的状态空间描述正式分析这些系统的工具。借助新的分析工具,我们可以对BTS如何推广早期方法的形式形式化。我们还显示了BTS在自动化计划和机器学习中的使用。最后,我们描述了一组扩展的工具,以捕获随机BT的行为,其中动作的结果由概率描述。这些工具可以计算成功概率和完成时间。
translated by 谷歌翻译
我们考虑使用最低限度的努力与人类机器人团队一起完成一组$ n $任务的问题。在许多领域中,如果有许多任务有限的任务,教机器人完全自主可能会适得其反。相反,最佳策略是权衡教授机器人及其好处的成本 - 它允许机器人自动解决多少新任务。我们将其作为规划问题提出,目的是确定机器人应自动执行的任务(ACT),应将哪些任务委派给人类(委托)以及应教授机器人的哪些任务(学习)以完成所有给定的任务都以最小的努力。这个计划问题导致搜索树以$ n $成倍增长 - 使标准图形搜索算法难以理解。我们通过将问题转换为混合整数程序来解决这个问题,该程序可以使用固定求解器有效地解决解决方案质量的范围。为了预测学习的好处,我们提出了一个先进的预测分类器。给定两个任务,该分类器预测接受培训的技能是否会转移到另一个。最后,我们在模拟和现实世界中评估了有关PEG插入和乐高堆叠任务的方法,显示了人类努力的大量节省。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
6D在杂乱的场景中抓住是机器人操纵中的长期存在。由于状态估计不准确,开环操作管道可能会失败,而大多数端到端的掌握方法尚未缩放到具有障碍物的复杂场景。在这项工作中,我们提出了一种新的杂乱场景掌握的最终学习方法。我们的分层框架基于部分点云观测学习无碰撞目标驱动的抓取性。我们学习嵌入空间来编码培训期间的专家掌握计划和一个变形式自动化器,以在测试时间上采样不同的抓握轨迹。此外,我们培训批评网络的计划选择和选项分类器,用于通过分层加强学习切换到实例掌握策略。我们评估我们的方法并与仿真中的几个基线进行比较,并证明我们的潜在规划可以概括为真实的杂乱场景掌握任务。我们的视频和代码可以在https://sites.google.com/view/latent-grasping中找到。
translated by 谷歌翻译