本文介绍了自回归模型采样的替代方法。根据模型定义的过渡动态,通常按归类模型顺序进行采样。相反,我们提出了一种采样过程,用于初始化具有白噪声的序列,并遵循Langevin动态定义的Markov链在序列的全局日志似然上。该方法并行化采样过程并推广到条件采样。使用自回归模型作为贝叶斯先前,我们可以使用条件可能性或约束来转向生成模型的输出。我们将这些技术应用于视觉和音频域的自回归模型,具有竞争力的音频源分离,超级分辨率和染色。
translated by 谷歌翻译
自回归生成模型可以估计复杂的连续数据分布,例如在RL环境,图像强度和音频中的轨迹推出。大多数最先进的模型将连续数据离散为几个箱,并在箱上使用分类分布来近似连续数据分布。优点是,分类分布可以轻松地表达多种模式,并且可以简单地进行优化。但是,如果没有明显的垃圾箱,这种近似就无法表达密度的急剧变化,从而使其参数效率低下。我们提出了一种称为自适应分类离散化(ADACAT)的有效,表现力的多模式参数化。 AdaCat自适应地自适应地自动回归模型的每个维度,这使该模型能够分配密度为感兴趣的细胞间隔,从而提高了参数效率。 Adacat概括了分类和基于分位数的回归。 ADACAT是任何基于离散化的分布估计器的简单附加组件。在实验中,Adacat改善了现实世界表数据,图像,音频和轨迹的密度估计,并改善了基于模型的离线RL计划。
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
矢量量化变量自动编码器(VQ-VAE)是基于数据的离散潜在表示的生成模型,其中输入映射到有限的学习嵌入式集合。要生成新样品,必须对离散状态进行自动介绍的先验分布。分别地。这一先验通常非常复杂,并导致生成缓慢。在这项工作中,我们提出了一个新模型,以同时训练先验和编码器/解码器网络。我们在连续编码的向量和非信息性先验分布之间建立扩散桥。然后将潜在离散状态作为这些连续向量的随机函数。我们表明,我们的模型与迷你imagenet和Cifar数据集的自动回归先验具有竞争力,并且在优化和采样方面都有效。我们的框架还扩展了标准VQ-VAE,并可以启用端到端培训。
translated by 谷歌翻译
基于扩散的生成模型已经证明了感知上令人印象深刻的合成能力,但是它们也可以是基于可能性的模型吗?我们以肯定的方式回答了这一点,并介绍了一个基于扩散的生成模型家族,该模型可以在标准图像密度估计基准上获得最先进的可能性。与其他基于扩散的模型不同,我们的方法允许与其他模型的其余部分共同对噪声时间表进行有效优化。我们表明,根据扩散数据的信噪比,变异下限(VLB)简化为非常短的表达,从而改善了我们对该模型类别的理论理解。使用这种见解,我们证明了文献中提出的几个模型之间的等效性。此外,我们表明连续时间VLB在噪声方面不变,除了其端点处的信噪比。这使我们能够学习一个噪声时间表,以最大程度地减少所得VLB估计器的差异,从而更快地优化。将这些进步与建筑改进相结合,我们获得了图像密度估计基准的最先进的可能性,超过了多年来主导这些基准测试的自回旋模型,通常优化了很多年。此外,我们展示了如何将模型用作BITS背包压缩方案的一部分,并展示了接近理论最佳的无损压缩率。代码可在https://github.com/google-research/vdm上找到。
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
扩散模型是一类深入生成模型,在具有密集理论建立的各种任务上显示出令人印象深刻的结果。尽管与其他最先进的模型相比,扩散模型的样本合成质量和多样性令人印象深刻,但它们仍然遭受了昂贵的抽样程序和次优可能的估计。最近的研究表明,对提高扩散模型的性能的热情非常热情。在本文中,我们对扩散模型的现有变体进行了首次全面综述。具体而言,我们提供了扩散模型的第一个分类法,并将它们分类为三种类型,即采样加速增强,可能性最大化的增强和数据将来增强。我们还详细介绍了其他五个生成模型(即变异自动编码器,生成对抗网络,正常流量,自动回归模型和基于能量的模型),并阐明扩散模型与这些生成模型之间的连接。然后,我们对扩散模型的应用进行彻底研究,包括计算机视觉,自然语言处理,波形信号处理,多模式建模,分子图生成,时间序列建模和对抗性纯化。此外,我们提出了与这种生成模型的发展有关的新观点。
translated by 谷歌翻译
当我们希望将其用作生成模型时,任何显式的功能表示$ f $都会受到两个主要障碍的阻碍:设计$ f $,以便采样快速,并估计$ z = \ int f $ ^{ - 1} f $集成到1。随着$ f $本身变得复杂,这变得越来越复杂。在本文中,我们表明,当通过让网络代表目标密度的累积分布函数并应用积极的基本定理,可以通过神经网络对一维条件密度进行建模时,可以精确地计算出$ z $。 。我们还得出了一种快速算法,用于通过逆变换方法从产生的表示。通过将这些原理扩展到更高的维度,我们介绍了\ textbf {神经逆变换采样器(NITS)},这是一个新颖的深度学习框架,用于建模和从一般,多维,紧凑的概率密度。 NIT是一个高度表达性的密度估计器,具有端到端的可不同性,快速采样以及精确且廉价的可能性评估。我们通过将其应用于现实,高维密度估计任务来证明NIT的适用性:基于CIFAR-10数据集对基于可能性的生成模型,以及基于基准数据集的UCI套件的密度估计,nits可以在其中产生令人信服的结果或超越或超越或超越或超越或超越或超越或超越或超越。艺术状态。
translated by 谷歌翻译
In this work, we propose DiffWave, a versatile diffusion probabilistic model for conditional and unconditional waveform generation. The model is non-autoregressive, and converts the white noise signal into structured waveform through a Markov chain with a constant number of steps at synthesis. It is efficiently trained by optimizing a variant of variational bound on the data likelihood. DiffWave produces high-fidelity audio in different waveform generation tasks, including neural vocoding conditioned on mel spectrogram, class-conditional generation, and unconditional generation. We demonstrate that DiffWave matches a strong WaveNet vocoder in terms of speech quality (MOS: 4.44 versus 4.43), while synthesizing orders of magnitude faster. In particular, it significantly outperforms autoregressive and GAN-based waveform models in the challenging unconditional generation task in terms of audio quality and sample diversity from various automatic and human evaluations. 1 * Contributed to the work during an internship at Baidu Research, USA. 1 Audio samples are in: https://diffwave-demo.github.io/
translated by 谷歌翻译
Diffusion models have quickly become the go-to paradigm for generative modelling of perceptual signals (such as images and sound) through iterative refinement. Their success hinges on the fact that the underlying physical phenomena are continuous. For inherently discrete and categorical data such as language, various diffusion-inspired alternatives have been proposed. However, the continuous nature of diffusion models conveys many benefits, and in this work we endeavour to preserve it. We propose CDCD, a framework for modelling categorical data with diffusion models that are continuous both in time and input space. We demonstrate its efficacy on several language modelling tasks.
translated by 谷歌翻译
尽管扩散模型在图像生成中表现出了巨大的成功,但它们的噪声生成过程并未明确考虑图像的结构,例如它们固有的多尺度性质。受扩散模型的启发和粗到精细建模的可取性,我们提出了一个新模型,该模型通过迭代反转热方程式生成图像,当在图像的2D平面上运行时,PDE局部删除了细尺度信息。在我们的新方法中,正向热方程的解被解释为有向图形模型中的变异近似。我们展示了有希望的图像质量,并指出了在扩散模型中未见的新兴定性特性,例如在神经网络可解释性的图像和各个方面的整体颜色和形状分解。对自然图像的光谱分析将我们的模型定位为扩散模型的一种双重偶,并揭示了其中的隐式感应偏见。
translated by 谷歌翻译
我们正式地用密度$ p_x $中的未知分发问题映射了从$ \ mathbb {r} ^ d $上学习和采样$ p_ \ mathbf {y} $ in $ \ mathbb {r} ^ {使用固定因子内核将$ P_X $获得的MD} $获取:$ p_ \ mathbf {y} $被称为m密度和因子内核作为多索静音噪声模型(MNM)。 m-litess比$ p_x $更顺畅,更容易学习和示例,但对于大量的$ m $来说,由于估计$ x $来估计$ \ mathbf {y} = \ mathbf {y $使用贝叶斯估算器$ \ widehat {x}(\ mathbf {y})= \ mathbb {e} [x \ vert \ mathbf {y} = \ mathbf {y}。为了制定问题,我们从无通知$ P_ \ MATHBF {Y} $以封闭式表达以封闭式表示的泊松和高斯MNMS获得$ \ widehat {x}(\ mathbf {y})$。这导致了用于学习参数能量和得分功能的简单最小二乘目标。我们展示了各种兴趣的参数化方案,包括研究高斯M密度直接导致多营养的自动化器 - 这是在文献中的去噪自动化器和经验贝叶斯之间进行的第一个理论连接。来自$ P_X $的示例由步行跳转采样(Saremi&Hyvarinen,2019)通过欠款Langevin MCMC(Walk)从$ P_ \ Mathbf {Y} $和Multimeasurement Bayes估算$ x $(跳转)。我们研究Mnist,CiFar-10和FFHQ-256数据集上的置换不变高斯M密度,并证明了该框架的有效性,以实现高尺寸的快速混合稳定的马尔可夫链。
translated by 谷歌翻译
Denoising diffusion probabilistic models (DDPM) are a class of generative models which have recently been shown to produce excellent samples. We show that with a few simple modifications, DDPMs can also achieve competitive loglikelihoods while maintaining high sample quality. Additionally, we find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes with a negligible difference in sample quality, which is important for the practical deployment of these models. We additionally use precision and recall to compare how well DDPMs and GANs cover the target distribution. Finally, we show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable. We release our code at https://github.com/ openai/improved-diffusion.
translated by 谷歌翻译
深度学习表现出巨大的生成任务潜力。生成模型是可以根据某些隐含参数随机生成观测值的模型类。最近,扩散模型由于其发电能力而成为一类生成模型。如今,已经取得了巨大的成就。除了计算机视觉,语音产生,生物信息学和自然语言处理外,还需要在该领域探索更多应用。但是,扩散模型具有缓慢生成过程的自然缺点,从而导致许多增强的作品。该调查总结了扩散模型的领域。我们首先说明了两项具有里程碑意义的作品的主要问题-DDPM和DSM。然后,我们提供各种高级技术,以加快扩散模型 - 训练时间表,无训练采样,混合模型以及得分和扩散统一。关于现有模型,我们还根据特定的NFE提供了FID得分的基准和NLL。此外,引入了带有扩散模型的应用程序,包括计算机视觉,序列建模,音频和科学AI。最后,该领域以及局限性和进一步的方向都进行了摘要。
translated by 谷歌翻译
基于分数的生成模型(SGMS)已经证明了显着的合成质量。 SGMS依赖于扩散过程,逐渐将数据逐渐渗透到贸易分布,而生成式模型则学会去噪。除了数据分布本身,这种去噪任务的复杂性是由扩散过程独特地确定的。我们认为当前的SGMS采用过于简单的扩散,导致不必要的复杂的去噪流程,限制了生成的建模性能。根据与统计力学的联系,我们提出了一种新型危及阻尼Langevin扩散(CLD),并表明基于CLD的SGMS实现了优异的性能。 CLD可以被解释为在扩展空间中运行关节扩散,其中辅助变量可以被视为耦合到数据变量的“速度”,如Hamiltonian动态。我们推导了一种用于CLD的小说得分匹配目标,并表明该模型仅需要了解给定数据的速度分布的条件分布的得分函数,而不是直接学习数据的分数。我们还导出了一种新的采样方案,用于从基于CLD的扩散模型有效合成。我们发现CLD在类似的网络架构和采样计算预算中优于综合质量的先前SGM。我们展示我们的CLD的新型采样器显着优于欧拉 - 玛雅山等求解器。我们的框架为基于刻痕的去噪扩散模型提供了新的见解,并且可以随时用于高分辨率图像合成。项目页面和代码:https://nv-tlabs.github.io/cld-sgm。
translated by 谷歌翻译
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at https://github.com/hojonathanho/diffusion.
translated by 谷歌翻译
由于其高质量的重建以及将现有迭代求解器结合起来的易于性,因此最近将扩散模型作为强大的生成反问题解决器研究。但是,大多数工作都专注于在无噪声设置中解决简单的线性逆问题,这显着不足以使实际问题的复杂性不足。在这项工作中,我们将扩散求解器扩展求解器,以通过后采样的拉普拉斯近似有效地处理一般噪声(非)线性反问题。有趣的是,所得的后验采样方案是扩散采样的混合版本,具有歧管约束梯度,而没有严格的测量一致性投影步骤,与先前的研究相比,在嘈杂的设置中产生了更可取的生成路径。我们的方法表明,扩散模型可以结合各种测量噪声统计量,例如高斯和泊松,并且还有效处理嘈杂的非线性反问题,例如傅立叶相检索和不均匀的脱毛。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
我们提出了离散的Langevin提案(DLP),这是一种简单且可扩展的基于梯度的建议,用于对复杂的高维离散分布进行采样。与基于Gibbs采样的方法相反,DLP能够单个步骤并行更新所有坐标,并且更改的幅度由步骤尺寸控制。这允许在高维且密切相关的变量的空间中进行廉价,有效的探索。我们通过证明其固定分布的渐近偏置对于对数季度分布而言是零,并且对于接近对数季度的分布而言,我们证明了DLP的效率为零。使用DLP,我们开发了几种采样算法的变体,包括未经调整的,大都市调整后的,随机和预处理版本。DLP在各种任务上都优于许多受欢迎的替代方案,包括ISING模型,受限的Boltzmann机器,基于深层的基于能量的模型,二进制神经网络和语言生成。
translated by 谷歌翻译
最近,基于扩散的生成模型已引入语音增强的任务。干净的语音损坏被建模为固定的远期过程,其中逐渐添加了越来越多的噪声。通过学习以嘈杂的输入为条件的迭代方式扭转这一过程,可以产生干净的语音。我们以先前的工作为基础,并在随机微分方程的形式主义中得出训练任务。我们对基础分数匹配目标进行了详细的理论综述,并探索了不同的采样器配置,以解决测试时的反向过程。通过使用自然图像生成文献的复杂网络体系结构,与以前的出版物相比,我们可以显着提高性能。我们还表明,我们可以与最近的判别模型竞争,并在评估与培训不同的语料库时获得更好的概括。我们通过主观的听力测试对评估结果进行补充,其中我们提出的方法是最好的。此外,我们表明所提出的方法在单渠道语音覆盖中实现了出色的最新性能。我们的代码和音频示例可在线获得,请参见https://uhh.de/inf-sp-sgmse
translated by 谷歌翻译