成对目标范例是机器学习的重要方面。使用成对目标功能的机器学习方法的示例包括面部识别,度量学习,两分性学习,多个内核学习以及曲线下面积(AUC)最大化的差异网络。与点学习相比,成对学习的样本量随样本数量的数量二次增长,从而使其复杂性增长。研究人员主要通过使用在线学习系统来应对这一挑战。然而,最近的研究为平滑损失功能提供了自适应样本量训练,作为融合和复杂性方面的更好策略,但没有全面的理论研究。在一项独特的研究方面,重要性抽样引发了有限的角度最小化的极大兴趣。这是因为随机梯度方差,这会导致收敛大大减慢。在本文中,我们将自适应样本量和对成对学习的重要性采样技术结合在一起,并保证非平滑凸成对损失函数的收敛保证。特别是,使用扩展的训练集对模型进行随机训练,以针对从稳定性边界得出的预定义数量的迭代。此外,我们证明在每次迭代时进行采样相反的实例会降低梯度的方差,从而加速收敛。 AUC最大化中各种数据集的实验证实了理论结果。
translated by 谷歌翻译
优化用于解决目标函数的机器学习算法引起了极大的兴趣。探索了优化常见算法的几种方法,例如梯度下降和随机梯度下降。这些方法之一是通过自适应采样来降低梯度方差,以解决大规模优化的经验风险最小化(ERM)问题。在本文中,我们将探讨如何从少量样本开始,然后几何增加它并使用先前样品ERM的解决方案来计算新的ERM。这将解决sublinear收敛的一阶优化算法,但计算复杂性较低。本文从该方法的理论证明开始,然后进行了两个实验,将梯度下降与梯度下降的自适应采样和ADAM进行了比较,并在不同数据集上使用自适应采样ADAM进行了比较。
translated by 谷歌翻译
成对学习是指损失函数取决于一对情况的学习任务。它实例化了许多重要的机器学习任务,如双级排名和度量学习。一种流行的方法来处理成对学习中的流数据是在线梯度下降(OGD)算法,其中需要将当前实例配对以前具有足够大的尺寸的先前实例的电流实例,因此遭受可扩展性问题。在本文中,我们提出了用于成对学习的简单随机和在线梯度下降方法。与现有研究的显着差异是,我们仅将当前实例与前一个构建梯度方向配对,这在存储和计算复杂性中是有效的。我们为凸和非凸起的展示结果,优化和泛化误差界以及平滑和非光滑问题都开发了新颖的稳定性结果,优化和泛化误差界限。我们引入了新颖的技术来解耦模型的依赖性和前一个例子在优化和泛化分析中。我们的研究解决了使用具有非常小的固定尺寸的缓冲集开发OGD的有意义的泛化范围的开放问题。我们还扩展了我们的算法和稳定性分析,以便为成对学习开发差异私有的SGD算法,这显着提高了现有结果。
translated by 谷歌翻译
ROC曲线下的区域(又称AUC)是评估分类器不平衡数据的性能的选择。 AUC最大化是指通过直接最大化其AUC分数来学习预测模型的学习范式。它已被研究了二十年来,其历史可以追溯到90年代后期,从那时起,大量工作就致力于最大化。最近,对大数据和深度学习的深度最大化的随机AUC最大化已受到越来越多的关注,并对解决现实世界中的问题产生了巨大的影响。但是,据我们所知,没有对AUC最大化的相关作品进行全面调查。本文旨在通过回顾过去二十年来审查文献来解决差距。我们不仅给出了文献的整体看法,而且还提供了从配方到算法和理论保证的不同论文的详细解释和比较。我们还确定并讨论了深度AUC最大化的剩余和新兴问题,并就未来工作的主题提供建议。
translated by 谷歌翻译
成对学习正在接受越来越多的关注,因为它涵盖了许多重要的机器学习任务,例如度量学习,AUC最大化和排名。研究成对学习的泛化行为是重要的。然而,现有的泛化分析主要侧重于凸面的目标函数,使非挖掘学习远远较少。此外,导出用于成对学习的泛化性能的当前学习速率主要是较慢的顺序。通过这些问题的动机,我们研究了非透露成对学习的泛化性能,并提供了改进的学习率。具体而言,我们基于其分析经验风险最小化器,梯度下降和随机梯度下降成对比对学习的不同假设,在不同假设下产生不同均匀的梯度梯度收敛。我们首先在一般的非核心环境中成功地为这些算法建立了学习率,在普通非核心环境中,分析揭示了优化和泛化之间的权衡的见解以及早期停止的作用。然后,我们调查非凸起学习的概括性表现,具有梯度优势曲率状态。在此设置中,我们推出了更快的订单$ \ mathcal {o}(1 / n)$的学习速率,其中$ n $是样本大小。如果最佳人口风险很小,我们进一步将学习率提高到$ \ mathcal {o}(1 / n ^ 2)$,这是我们的知识,是第一个$ \ mathcal {o}( 1 / n ^ 2)$ - 成对学习的速率类型,无论是凸面还是非渗透学习。总的来说,我们系统地分析了非凸显成对学习的泛化性能。
translated by 谷歌翻译
转移学习或域适应性与机器学习问题有关,在这些问题中,培训和测试数据可能来自可能不同的概率分布。在这项工作中,我们在Russo和Xu发起的一系列工作之后,就通用错误和转移学习算法的过量风险进行了信息理论分析。我们的结果也许表明,也许正如预期的那样,kullback-leibler(kl)Divergence $ d(\ mu || \ mu')$在$ \ mu $和$ \ mu'$表示分布的特征中起着重要作用。培训数据和测试测试。具体而言,我们为经验风险最小化(ERM)算法提供了概括误差上限,其中两个分布的数据在训练阶段都可用。我们进一步将分析应用于近似的ERM方法,例如Gibbs算法和随机梯度下降方法。然后,我们概括了与$ \ phi $ -Divergence和Wasserstein距离绑定的共同信息。这些概括导致更紧密的范围,并且在$ \ mu $相对于$ \ mu' $的情况下,可以处理案例。此外,我们应用了一套新的技术来获得替代的上限,该界限为某些学习问题提供了快速(最佳)的学习率。最后,受到派生界限的启发,我们提出了Infoboost算法,其中根据信息测量方法对源和目标数据的重要性权重进行了调整。经验结果表明了所提出的算法的有效性。
translated by 谷歌翻译
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions.Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
translated by 谷歌翻译
最近,有大量的工作致力于研究马尔可夫链随机梯度方法(MC-SGMS),这些方法主要集中于他们解决最小化问题的收敛分析。在本文中,我们通过统计学习理论框架中的算法稳定性镜头对MC-SGM进行了全面的MC-SGMS分析。对于经验风险最小化(ERM)问题,我们通过引入实用的论点稳定性来建立平稳和非平滑案例的最佳人口风险界限。对于最小值问题,我们建立了在平均参数稳定性和概括误差之间的定量连接,该误差扩展了均匀稳定性\ cite {lei2021Staritibal}的现有结果。我们进一步开发了预期和高概率的凸孔问题问题的第一个几乎最佳的收敛速率,这与我们的稳定性结果相结合,表明可以在平滑和非平滑案例中达到最佳的概括界限。据我们所知,这是对梯度从马尔可夫过程采样时对SGM的首次概括分析。
translated by 谷歌翻译
Is it possible for a first-order method, i.e., only first derivatives allowed, to be quadratically convergent? For univariate loss functions, the answer is yes -- the Steffensen method avoids second derivatives and is still quadratically convergent like Newton method. By incorporating an optimal step size we can even push its convergence order beyond quadratic to $1+\sqrt{2} \approx 2.414$. While such high convergence orders are a pointless overkill for a deterministic algorithm, they become rewarding when the algorithm is randomized for problems of massive sizes, as randomization invariably compromises convergence speed. We will introduce two adaptive learning rates inspired by the Steffensen method, intended for use in a stochastic optimization setting and requires no hyperparameter tuning aside from batch size. Extensive experiments show that they compare favorably with several existing first-order methods. When restricted to a quadratic objective, our stochastic Steffensen methods reduce to randomized Kaczmarz method -- note that this is not true for SGD or SLBFGS -- and thus we may also view our methods as a generalization of randomized Kaczmarz to arbitrary objectives.
translated by 谷歌翻译
In this book chapter, we briefly describe the main components that constitute the gradient descent method and its accelerated and stochastic variants. We aim at explaining these components from a mathematical point of view, including theoretical and practical aspects, but at an elementary level. We will focus on basic variants of the gradient descent method and then extend our view to recent variants, especially variance-reduced stochastic gradient schemes (SGD). Our approach relies on revealing the structures presented inside the problem and the assumptions imposed on the objective function. Our convergence analysis unifies several known results and relies on a general, but elementary recursive expression. We have illustrated this analysis on several common schemes.
translated by 谷歌翻译
最尖锐的已知高概率泛化界限均匀稳定的算法(Feldman,Vondr \'{A} K,2018,2010),(Bousquet,Klochkov,Jhivotovskiy,2020)包含一般不可避免的采样误差术语,订单$ \ Theta(1 / \ sqrt {n})$。当应用于过度的风险范围时,这导致次优导致在几个标准随机凸优化问题中。我们表明,如果满足所谓的伯尔斯坦状况,则可以避免术语$ \θ(1 / \ sqrt {n})$,并且高达$ o(1 / n)$的高概率过剩风险范围通过均匀的稳定性是可能的。使用此结果,我们展示了高概率过度的风险,其速率为O $ O(\ log n / n)$的强大凸,Lipschitz损失为\ emph {任何}经验风险最小化方法。这解决了Shalev-Shwartz,Shamir,Srebro和Sridharan(2009)的问题。我们讨论如何(\ log n / n)$高概率过度风险缩小,在没有通常的平滑度的情况下强烈凸起和嘴唇损耗的情况下,可能的梯度下降可能是可能的。
translated by 谷歌翻译
我们认为随机梯度下降及其在繁殖内核希尔伯特空间中二进制分类问题的平均变体。在使用损失函数的一致性属性的传统分析中,众所周知,即使在条件标签概率上假设低噪声状态时,预期的分类误差也比预期风险更慢。因此,最终的速率为sublinear。因此,重要的是要考虑是否可以实现预期分类误差的更快收敛。在最近的研究中,随机梯度下降的指数收敛速率在强烈的低噪声条件下显示,但前提是理论分析仅限于平方损耗函数,这对于二元分类任务来说是不足的。在本文中,我们在随机梯度下降的最后阶段中显示了预期分类误差的指数收敛性,用于在相似的假设下进行一类宽类可区分的凸损失函数。至于平均的随机梯度下降,我们表明相同的收敛速率来自训练的早期阶段。在实验中,我们验证了对$ L_2 $调查的逻辑回归的分析。
translated by 谷歌翻译
稀疏性损失最小化问题在包括机器学习,数据挖掘和现代统计的各个领域中起着重要作用。近端梯度下降法和坐标下降法是解决最小化问题的最流行方法。尽管现有方法可以实现隐式模型识别,但在有限数量的迭代中,也就是支持集合识别,但在高维情况下,这些方法仍然遭受巨大的计算成本和内存负担。原因是这些方法中的支持集识别是隐式的,因此无法明确识别实践中的低复杂性结构,即,它们无法通过降低尺寸丢弃相关特征的无用系数,以实现算法加速。为了应对这一挑战,我们提出了一种新颖的加速双随机梯度下降(ADSGD)方法,用于稀疏性损失最小化问题,这可以通过在优化过程中消除无效系数来减少块迭代次数的数量,并最终实现更快的显式模型识别和改进的模型识别和改进和改进的模型识别和改进速度算法效率。从理论上讲,我们首先证明ADSGD可以达到线性收敛速率并降低总体计算复杂性。更重要的是,我们证明ADSGD可以实现显式模型识别的线性速率。从数值上讲,基准数据集上的实验结果证实了我们提出的方法的效率。
translated by 谷歌翻译
在结果决策中使用机器学习模型通常会加剧社会不平等,特别是对种族和性别定义的边缘化群体成员产生不同的影响。 ROC曲线(AUC)下的区域被广泛用于评估机器学习中评分功能的性能,但与其他性能指标相比,在算法公平性中进行了研究。由于AUC的成对性质,定义基于AUC的组公平度量是成对依赖性的,并且可能涉及\ emph {group}和\ emph {group} aucs。重要的是,仅考虑一种AUC类别不足以减轻AUC优化的不公平性。在本文中,我们提出了一个最小值学习和偏置缓解框架,该框架既包含组内和组间AUC,同时保持实用性。基于这个Rawlsian框架,我们设计了一种有效的随机优化算法,并证明了其收敛到最小组级AUC。我们对合成数据集和现实数据集进行了数值实验,以验证Minimax框架的有效性和所提出的优化算法。
translated by 谷歌翻译
为了提高分布式学习的训练速度,近年来见证了人们对开发同步和异步分布式随机方差减少优化方法的极大兴趣。但是,所有现有的同步和异步分布式训练算法都遭受了收敛速度或实施复杂性的各种局限性。这激发了我们提出一种称为\ algname(\ ul {s} emi-as \ ul {yn}的算法} ent \ ul {s} earch),它利用方差减少框架的特殊结构来克服同步和异步分布式学习算法的局限性,同时保留其显着特征。我们考虑分布式和共享内存体系结构下的\ algname的两个实现。我们表明我们的\ algname算法具有\(o(\ sqrt {n} \ epsilon^{ - 2}( - 2}(\ delta+1)+n)\)\)和\(o(\ sqrt {n} {n} 2}(\ delta+1)d+n)\)用于实现\(\ epsilon \)的计算复杂性 - 分布式和共享内存体系结构分别在非convex学习中的固定点,其中\(n \)表示培训样本的总数和\(\ delta \)表示工人的最大延迟。此外,我们通过建立二次强烈凸和非convex优化的算法稳定性界限来研究\ algname的概括性能。我们进一步进行广泛的数值实验来验证我们的理论发现
translated by 谷歌翻译
随机梯度下降(SGDA)及其变体一直是解决最小值问题的主力。但是,与研究有差异隐私(DP)约束的经过良好研究的随机梯度下降(SGD)相反,在理解具有DP约束的SGDA的概括(实用程序)方面几乎没有工作。在本文中,我们使用算法稳定性方法在不同的设置中建立DP-SGDA的概括(实用程序)。特别是,对于凸 - 凸环设置,我们证明DP-SGDA可以在平滑和非平滑案例中都可以根据弱原始二元人群风险获得最佳的效用率。据我们所知,这是在非平滑案例中DP-SGDA的第一个已知结果。我们进一步在非convex-rong-concave环境中提供了实用性分析,这是原始人口风险的首个已知结果。即使在非私有设置中,此非convex设置的收敛和概括结果也是新的。最后,进行了数值实验,以证明DP-SGDA在凸和非凸病例中的有效性。
translated by 谷歌翻译
用于解决无约束光滑游戏的两个最突出的算法是经典随机梯度下降 - 上升(SGDA)和最近引入的随机共识优化(SCO)[Mescheder等,2017]。已知SGDA可以收敛到特定类别的游戏的静止点,但是当前的收敛分析需要有界方差假设。 SCO用于解决大规模对抗问题,但其收敛保证仅限于其确定性变体。在这项工作中,我们介绍了预期的共同胁迫条件,解释了它的好处,并在这种情况下提供了SGDA和SCO的第一次迭代收敛保证,以解决可能是非单调的一类随机变分不等式问题。我们将两种方法的线性会聚到解决方案的邻域时,当它们使用恒定的步长时,我们提出了富有识别的步骤化切换规则,以保证对确切解决方案的融合。此外,我们的收敛保证在任意抽样范式下担保,因此,我们对迷你匹配的复杂性进行了解。
translated by 谷歌翻译
本文重点介绍了解决光滑非凸强凹入最小问题的随机方法,这导致了由于其深度学习中的潜在应用而受到越来越长的关注(例如,深度AUC最大化,分布鲁棒优化)。然而,大多数现有算法在实践中都很慢,并且它们的分析围绕到几乎静止点的收敛。我们考虑利用Polyak-\ L Ojasiewicz(PL)条件来设计更快的随机算法,具有更强的收敛保证。尽管已经用于设计许多随机最小化算法的PL条件,但它们对非凸敏最大优化的应用仍然罕见。在本文中,我们提出并分析了基于近端的跨越时代的方法的通用框架,许多众所周知的随机更新嵌入。以{\ BF原始物镜差和二元间隙}的方式建立快速收敛。与现有研究相比,(i)我们的分析基于一个新的Lyapunov函数,包括原始物理差距和正则化功能的二元间隙,(ii)结果更加全面,提高了更好的依赖性的速率不同假设下的条件号。我们还开展深层和非深度学习实验,以验证我们的方法的有效性。
translated by 谷歌翻译
我们考虑设计统一稳定的一阶优化算法以最小化的问题。统一的稳定性通常用于获得优化算法的概括误差范围,我们对实现它的一般方法感兴趣。对于欧几里得的几何形状,我们建议采用黑盒转换,给定平滑的优化算法,它产生了算法的均匀稳定版本,同时将其收敛速率保持在对数因素上。使用此减少,我们获得了一种(几乎)最佳算法,以平滑优化,并通过收敛速率$ \ widetilde {o}(1/t^2)$和均匀的稳定性$ O(t^2/n)$,解决一个开放的问题Chen等。(2018);阿蒂亚和科伦(2021)。对于更一般的几何形状,我们开发了一种镜下下降的变体,以平滑优化,收敛速率$ \ widetilde {o}(1/t)$和统一的稳定性$ O(t/n)$(t/n)$,留下了开放的问题转换方法如欧几里得情况。
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译