在这项工作中,我们启动了$ p $ -ADIC统计领域理论(SFTS)和神经网络(NNS)之间的对应关系的研究。在一般的量子场理论中,可以以严格的方式制定超过$ p $ - ad的时空理论。如今,这些理论被认为只是数学玩具模型,以理解真实理论的问题。在这项工作中,我们表明这些理论与深度信念网络(DBN)密切相关。 Hinton等。通过堆叠几台受限的玻尔兹曼机器(RBMS)来构建DBN。该结构的目的是获得具有层次结构(深度学习体系结构)的网络。 RBM对应于特定的自旋玻璃,因此DBN应对应于超法(分层)自旋玻璃。通过使用$ p $ -ADIC数字可以轻松构建此类系统的模型。在我们的方法中,$ p $ - adic SFT对应于$ p $ adiC的连续dbn,该理论的离散化对应于$ p $ - 亚种的离散dbn。我们证明这些最后的机器是通用近似器。在$ p $ -ADIC框架中,SFTS和NNS之间的对应关系尚未完全开发。我们指出几个开放问题。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
其中的许多神经网络能够复制复杂的任务或功能的原因之一是其普遍性财产。在过去的几十年里已经在提供单一或类神经网络的构造性证明见过很多尝试。本文是为了提供一大类,包括激活现有的大多数激活和超越的普遍性统一的和建设性的框架。在框架的心脏是神经网络近似标识的概念。事实证明,大多数现有的激活是神经网络近似的标志,因此在连续的函数对致密的空间普遍。该框架诱导几个优点。首先,它是建设性与功能分析,概率论,和数值分析的基本手段。其次,它是第一个统一的尝试,其有效期为大多数现有的激活。第三,作为一个以产品,该框架提供了一些现有的激活功能,包括米什司炉ELU,格鲁,等四的第一所大学证明,它发现带有普遍性的保证财产新的激活。事实上,任何活化\ textemdash其$ \ķ$阶导数,以$ \ķ$为整数,是积并且基本上界定\ textemdash是普遍的。第五,对于给定的激活和容错,框架精确地提供了具有预定数量的神经元,和重量/偏差的值中对应的一个隐藏神经网络的体系结构。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of geometries $\mathscr{X}$ and $\mathscr{Y}$ and our framework returns a DL model capable of causally approximating any ``regular'' map sending time series in $\mathscr{X}^{\mathbb{Z}}$ to time series in $\mathscr{Y}^{\mathbb{Z}}$ while respecting their forward flow of information throughout time. Suitable geometries on $\mathscr{Y}$ include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fr\'echet spaces admitting a Schauder basis, e.g. as in classical finance. Suitable, $\mathscr{X}$ are any compact subset of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of $\mathscr{X}$ and of $\mathscr{Y}$. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that H\"older functions, defined between such $\mathscr{X}$ and $\mathscr{Y}$ can be approximated by DL models.
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
矢量值随机变量的矩序列可以表征其定律。我们通过使用所谓的稳健签名矩来研究路径值随机变量(即随机过程)的类似问题。这使我们能够为随机过程定律得出最大平均差异类型的度量,并研究其在随机过程定律方面引起的拓扑。可以使用签名内核对该度量进行内核,从而有效地计算它。作为应用程序,我们为随机过程定律提供了非参数的两样本假设检验。
translated by 谷歌翻译
我们表明,具有二进制隐藏单元的深度信念网络可以在可见节点的父母密度上近似于任何多元概率密度。近似值以$ l^q $ -norm为$ q \ in [1,\ infty] $($ q = \ infty $,对应于最高标准)和kullback-leibler Divergence。此外,我们根据隐藏单元数量在近似误差上建立了尖锐的定量界限。
translated by 谷歌翻译
显示了最佳的收敛速率,显示了对保守随机偏微分方程的平均场限制对解决方案解决方案解决方案解决方案的收敛。作为第二个主要结果,该SPDE的定量中心极限定理再次得出,并以最佳的收敛速率得出。该结果尤其适用于在过叠层化的,浅的神经网络中与SPDES溶液中随机梯度下降动力学的平均场缩放率的收敛性。结果表明,在限制SPDE中包含波动可以提高收敛速度,并保留有关随机梯度下降的波动的信息。
translated by 谷歌翻译
众所周知,进食前馈神经网络的学习速度很慢,并且在深度学习应用中呈现了几十年的瓶颈。例如,广泛用于训练神经网络的基于梯度的学习算法在所有网络参数都必须迭代调整时往往会缓慢起作用。为了解决这个问题,研究人员和从业人员都尝试引入随机性来减少学习要求。基于Igelnik和Pao的原始结构,具有随机输入层的重量和偏见的单层神经网络在实践中取得了成功,但是缺乏必要的理论理由。在本文中,我们开始填补这一理论差距。我们提供了一个(校正的)严格证明,即Igelnik和PAO结构是连续函数在紧凑型域上连续函数的通用近似值,并且近似错误渐近地衰减,例如$ o(1/\ sqrt {n})网络节点。然后,我们将此结果扩展到非反应设置,证明人们可以在$ n $的情况下实现任何理想的近似误差,而概率很大。我们进一步调整了这种随机神经网络结构,以近似欧几里得空间的平滑,紧凑的亚曼叶量的功能,从而在渐近和非催化形式的理论保证中提供了理论保证。最后,我们通过数值实验说明了我们在歧管上的结果。
translated by 谷歌翻译
Wassersein梯度流通概率措施在各种优化问题中发现了许多应用程序。它们通常由于由涉及梯度型电位的一些平均场相互作用而发展的可交换粒子系统的连续极限。然而,在许多问题中,例如在多层神经网络中,所谓的粒子是在节点可更换的大图上的边缘权重。已知这样的大图可以收敛到连续的限制,称为Graphons,因为它们的大小增长到无穷大。我们表明,边缘权重的合适功能的欧几里德梯度流量会聚到可以被适当地描述为梯度流的曲线上的曲线给出的新型连续轴限制,或者更重要的是最大斜率的曲线。我们的设置涵盖了诸如同性恋功能和标量熵的石墨源上的几种自然功能,并详细介绍了示例。
translated by 谷歌翻译
我们研究了学习哈密顿$ h $ to precision $ \ varepsilon $的问题,假设我们将获得其gibbs state $ \ rho = \ exp( - \ beta h)/\ operatoratorname {tr}(\ exp(\ exp)( - \ beta h))$在已知的反温度$ \ beta $处。 Anshu,Arunachalam,Kuwahara和Soleimanifar(Nature Physics,2021,Arxiv:2004.07266)最近研究了此问题的样品复杂性(需要$ \ rho $的副本数量)。在高温(低$ \ beta $)制度中,他们的算法具有样品复杂性poly poly $(n,1/\ beta,1/\ varepsilon)$,并且可以用多项式但次优的时间复杂性实现。在本文中,我们研究了更一般的哈密顿人的同样问题。我们展示了如何学习哈密顿量的系数到错误$ \ varepsilon $带有样本复杂性$ s = o(\ log n/(\ beta \ varepsilon)^{2})$和样本大小的时间复杂性,$ o(s n)$。此外,我们证明了匹配的下限,表明我们算法的样品复杂性是最佳的,因此我们的时间复杂性也是最佳的。在附录中,我们证明,几乎可以使用相同的算法来从实时进化的统一$ e^{ - it H} $中学习$ h $,其中具有相似的示例和时间复杂性的小$ t $制度。
translated by 谷歌翻译
在此备忘录中,我们开发了一般框架,它允许同时研究$ \ MathBB R ^ D $和惠特尼在$ \ Mathbb r的离散和非离散子集附近的insoctry扩展问题附近的标签和未标记的近对准数据问题。^ d $与某些几何形状。此外,我们调查了与集群,维度减少,流形学习,视觉以及最小的能量分区,差异和最小最大优化的相关工作。给出了谐波分析,计算机视觉,歧管学习和与我们工作的信号处理中的众多开放问题。本发明内容中的一部分工作基于纸张中查尔斯Fefferman的联合研究[48],[49],[50],[51]。
translated by 谷歌翻译
Consider the multivariate nonparametric regression model. It is shown that estimators based on sparsely connected deep neural networks with ReLU activation function and properly chosen network architecture achieve the minimax rates of convergence (up to log nfactors) under a general composition assumption on the regression function. The framework includes many well-studied structural constraints such as (generalized) additive models. While there is a lot of flexibility in the network architecture, the tuning parameter is the sparsity of the network. Specifically, we consider large networks with number of potential network parameters exceeding the sample size. The analysis gives some insights into why multilayer feedforward neural networks perform well in practice. Interestingly, for ReLU activation function the depth (number of layers) of the neural network architectures plays an important role and our theory suggests that for nonparametric regression, scaling the network depth with the sample size is natural. It is also shown that under the composition assumption wavelet estimators can only achieve suboptimal rates.
translated by 谷歌翻译
我们研究了仅当仅可用的嘈杂数据时,重建神经网络反问题的解决方案的问题。我们假设问题可以用无限可逆的无限前向操作员建模。然后,我们将该正向操作员限制为有限维空间,以使逆向Lipschitz连续。对于逆操作员,我们证明存在一个神经网络,该神经网络是操作员的健壮到噪声近似。此外,我们表明可以从适当的干扰培训数据中学到这些神经网络。我们证明了这种方法对实践感兴趣的各种反向问题的可接受性。给出了支持理论发现的数值示例。
translated by 谷歌翻译
We generalize the classical universal approximation theorem for neural networks to the case of complex-valued neural networks. Precisely, we consider feedforward networks with a complex activation function $\sigma : \mathbb{C} \to \mathbb{C}$ in which each neuron performs the operation $\mathbb{C}^N \to \mathbb{C}, z \mapsto \sigma(b + w^T z)$ with weights $w \in \mathbb{C}^N$ and a bias $b \in \mathbb{C}$, and with $\sigma$ applied componentwise. We completely characterize those activation functions $\sigma$ for which the associated complex networks have the universal approximation property, meaning that they can uniformly approximate any continuous function on any compact subset of $\mathbb{C}^d$ arbitrarily well. Unlike the classical case of real networks, the set of "good activation functions" which give rise to networks with the universal approximation property differs significantly depending on whether one considers deep networks or shallow networks: For deep networks with at least two hidden layers, the universal approximation property holds as long as $\sigma$ is neither a polynomial, a holomorphic function, or an antiholomorphic function. Shallow networks, on the other hand, are universal if and only if the real part or the imaginary part of $\sigma$ is not a polyharmonic function.
translated by 谷歌翻译
给定$ n $数据点$ \ mathbb {r}^d $中的云,请考虑$ \ mathbb {r}^d $的$ m $ dimensional子空间预计点。当$ n,d $增长时,这一概率分布的集合如何?我们在零模型下考虑了这个问题。标准高斯矢量,重点是渐近方案,其中$ n,d \ to \ infty $,$ n/d \ to \ alpha \ in(0,\ infty)$,而$ m $是固定的。用$ \ mathscr {f} _ {m,\ alpha} $表示$ \ mathbb {r}^m $中的一组概率分布,在此限制中以低维度为单位,我们在此限制中建立了新的内部和外部界限$ \ mathscr {f} _ {m,\ alpha} $。特别是,我们将$ \ mathscr {f} _ {m,\ alpha} $的Wasserstein Radius表征为对数因素,并以$ M = 1 $确切确定它。我们还通过kullback-leibler差异和r \'{e} NYI信息维度证明了尖锐的界限。上一个问题已应用于无监督的学习方法,例如投影追求和独立的组件分析。我们介绍了与监督学习相关的相同问题的版本,并证明了尖锐的沃斯坦斯坦半径绑定。作为一个应用程序,我们在具有$ M $隐藏神经元的两层神经网络的插值阈值上建立了上限。
translated by 谷歌翻译
我们提出了一种新颖的随机网络模型,称为分形高斯网络(FGN),体现了明确定义和分析的分形结构。在不同的应用中经过经验观察了这种分形结构。 FGN在流行的纯粹随机几何图(A.K.A.Poirson Boolean网络)之间连续插入,以及具有越来越分形行为的随机图。事实上,它们形成了一个参数族的稀疏随机几何图,这是由条形参数化的,该参数化为分形结构的强度。 FGN由高斯乘法混沌(GMC)的潜在空间几何形状,其自身右边的分数正常的规范模型。我们在FGN中渐近地表征了FGN中的预期边缘,三角形,群体和轮辐型图案,揭示了与网络的大小参数的缩放中的不同模式。然后,我们除了作为随机图模型的基本属性之外,还基于观察到的网络数据检测变形的存在和基于观察到的网络数据的参数估计问题的自然问题。我们还通过在FGN的设置中揭开自然随机块模型来探讨社区结构的性别性。最后,我们将我们的结果与FGN的现象学分析证实了可用的科学文献中的空中性的现场,包括用于现实世界大规模网络数据的应用。
translated by 谷歌翻译