混合样品正则化(MSR),例如混合或cutmix,是一种强大的数据增强策略,可以推广卷积神经网络。先前的经验分析说明了MSR与传统的离线知识蒸馏(KD)之间的正交性能增长。更具体地说,可以通过MSR参与顺序蒸馏的训练阶段来增强学生网络。然而,MSR和在线知识蒸馏之间的相互作用,这是一个更强的蒸馏范式,在那里,一群同伴互相学习的合奏仍然没有探索。为了弥合差距,我们首次尝试将cutmix纳入在线蒸馏中,我们从经验上观察到了重大改进。在这个事实的鼓舞下,我们提出了一个更强大的MSR,专门用于在线蒸馏,称为Cut^nMix。此外,一个新颖的在线蒸馏框架是在切割^nmix上设计的,以通过功能水平相互学习和自我启动的老师来增强蒸馏。对CIFAR10和CIFAR100进行六个网络体系结构的全面评估表明,我们的方法可以始终超过最先进的蒸馏方法。
translated by 谷歌翻译
知识蒸馏(KD)是一个有效的框架,旨在将有意义的信息从大型老师转移到较小的学生。通常,KD通常涉及如何定义和转移知识。以前的KD方法通常着重于挖掘各种形式的知识,例如功能地图和精致信息。但是,知识源自主要监督任务,因此是高度特定于任务的。在自我监督的代表学习的最新成功中,我们提出了一项辅助自我实施的增强任务,以指导网络学习更多有意义的功能。因此,我们可以从KD的这项任务中得出软性自我实施的增强分布作为更丰富的黑暗知识。与以前的知识不同,此分布编码从监督和自我监督的特征学习中编码联合知识。除了知识探索之外,我们建议在各个隐藏层上附加几个辅助分支,以充分利用分层特征图。每个辅助分支都被指导学习自学的增强任务,并将这种分布从教师到学生提炼。总体而言,我们称我们的KD方法为等级自我实施的增强知识蒸馏(HSSAKD)。标准图像分类的实验表明,离线和在线HSSAKD都在KD领域达到了最先进的表现。对象检测的进一步转移实验进一步验证了HSSAKD可以指导网络学习更好的功能。该代码可在https://github.com/winycg/hsakd上找到。
translated by 谷歌翻译
在线知识蒸馏会在所有学生模型之间进行知识转移,以减轻对预培训模型的依赖。但是,现有的在线方法在很大程度上依赖于预测分布并忽略了代表性知识的进一步探索。在本文中,我们提出了一种用于在线知识蒸馏的新颖的多尺度功能提取和融合方法(MFEF),其中包括三个关键组成部分:多尺度功能提取,双重注意和功能融合,以生成更有信息的特征图,以用于蒸馏。提出了在通道维度中的多尺度提取利用分界线和catenate,以提高特征图的多尺度表示能力。为了获得更准确的信息,我们设计了双重注意,以适应重要的渠道和空间区域。此外,我们通过功能融合来汇总并融合了以前的处理功能地图,以帮助培训学生模型。关于CIF AR-10,CIF AR-100和Cinic-10的广泛实验表明,MFEF转移了更有益的代表性知识,以蒸馏和胜过各种网络体系结构之间的替代方法
translated by 谷歌翻译
无教师的在线知识蒸馏(KD)旨在培训多个学生模型的合奏,并彼此提炼知识。尽管现有的在线KD方法实现了理想的性能,但它们通常专注于阶级概率作为核心知识类型,而忽略了宝贵的特征代表性信息。我们为在线KD提供了一个相互的对比学习(MCL)框架。 MCL的核心思想是以在线方式进行对比分布的相互交互和对比度分布的转移。我们的MCL可以汇总跨网络嵌入信息,并最大化两个网络之间的相互信息的下限。这使每个网络能够从他人那里学习额外的对比知识,从而提供更好的特征表示形式,从而提高视觉识别任务的性能。除最后一层外,我们还将MCL扩展到辅助特征细化模块辅助的几个中间层。这进一步增强了在线KD的表示能力。关于图像分类和转移学习到视觉识别任务的实验表明,MCL可以针对最新的在线KD方法带来一致的性能提高。优势表明,MCL可以指导网络生成更好的特征表示。我们的代码可在https://github.com/winycg/mcl上公开获取。
translated by 谷歌翻译
知识蒸馏是通过知识转移模型压缩的有效稳定的方法。传统知识蒸馏(KD)是将来自大型和训练有素的教师网络的知识转移到小型学生网络,这是一种单向过程。最近,已经提出了深度相互学习(DML)来帮助学生网络协同和同时学习。然而,据我们所知,KD和DML从未在统一的框架中共同探索,以解决知识蒸馏问题。在本文中,我们调查教师模型在KD中支持更值得信赖的监督信号,而学生则在DML中捕获教师的类似行为。基于这些观察,我们首先建议将KD与DML联合在统一的框架中。此外,我们提出了一个半球知识蒸馏(SOKD)方法,有效提高了学生和教师的表现。在这种方法中,我们在DML中介绍了同伴教学培训时尚,以缓解学生的模仿困难,并利用KD训练有素的教师提供的监督信号。此外,我们还显示我们的框架可以轻松扩展到基于功能的蒸馏方法。在CiFAR-100和Imagenet数据集上的广泛实验证明了所提出的方法实现了最先进的性能。
translated by 谷歌翻译
与常规知识蒸馏(KD)不同,自我KD允许网络在没有额外网络的任何指导的情况下向自身学习知识。本文提议从图像混合物(Mixskd)执行自我KD,将这两种技术集成到统一的框架中。 Mixskd相互蒸馏以图形和概率分布在随机的原始图像和它们的混合图像之间以有意义的方式。因此,它通过对混合图像进行监督信号进行建模来指导网络学习跨图像知识。此外,我们通过汇总多阶段功能图来构建一个自学老师网络,以提供软标签以监督骨干分类器,从而进一步提高自我增强的功效。图像分类和转移学习到对象检测和语义分割的实验表明,混合物KD优于其他最先进的自我KD和数据增强方法。该代码可在https://github.com/winycg/self-kd-lib上找到。
translated by 谷歌翻译
最近对知识蒸馏的研究发现,组合来自多位教师或学生的“黑暗知识”是有助于为培训创造更好的软目标,但以更大的计算和/或参数的成本为本。在这项工作中,我们通过在同一批量中传播和集合其他样本的知识来提供批处理知识合奏(烘焙)以生产用于锚固图像的精细柔软目标。具体地,对于每个感兴趣的样本,根据采样间的亲和力加权知识的传播,其与当前网络一起估计。然后可以集合传播的知识以形成更好的蒸馏靶。通过这种方式,我们的烘焙框架只通过单个网络跨多个样本进行在线知识。与现有知识合并方法相比,它需要最小的计算和内存开销。广泛的实验表明,轻质但有效的烘烤始终如一地提升多个数据集上各种架构的分类性能,例如,在想象网上的显着+ 0.7%的VINE-T的增益,只有+ 1.5%计算开销和零附加参数。烘焙不仅改善了Vanilla基线,还超越了所有基准的单一网络最先进。
translated by 谷歌翻译
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that ``smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
translated by 谷歌翻译
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
translated by 谷歌翻译
在线知识蒸馏(OKD)通过相互利用教师和学生之间的差异来改善所涉及的模型。它们之间的差距上有几个关键的瓶颈 - 例如,为什么以及何时以及何时损害表现,尤其是对学生的表现?如何量化教师和学生之间的差距? - 接受了有限的正式研究。在本文中,我们提出了可切换的在线知识蒸馏(Switokd),以回答这些问题。 Switokd的核心思想不是专注于测试阶段的准确性差距,而是通过两种模式之间的切换策略来适应训练阶段的差距,即蒸馏差距 - 专家模式(暂停老师,同时暂停教师保持学生学习)和学习模式(重新启动老师)。为了拥有适当的蒸馏差距,我们进一步设计了一个自适应开关阈值,该阈值提供了有关何时切换到学习模式或专家模式的正式标准,从而改善了学生的表现。同时,老师从我们的自适应切换阈值中受益,并基本上与其他在线艺术保持同步。我们进一步将Switokd扩展到具有两个基础拓扑的多个网络。最后,广泛的实验和分析验证了Switokd在最新面前的分类的优点。我们的代码可在https://github.com/hfutqian/switokd上找到。
translated by 谷歌翻译
Learning style refers to a type of training mechanism adopted by an individual to gain new knowledge. As suggested by the VARK model, humans have different learning preferences like visual, auditory, etc., for acquiring and effectively processing information. Inspired by this concept, our work explores the idea of mixed information sharing with model compression in the context of Knowledge Distillation (KD) and Mutual Learning (ML). Unlike conventional techniques that share the same type of knowledge with all networks, we propose to train individual networks with different forms of information to enhance the learning process. We formulate a combined KD and ML framework with one teacher and two student networks that share or exchange information in the form of predictions and feature maps. Our comprehensive experiments with benchmark classification and segmentation datasets demonstrate that with 15% compression, the ensemble performance of networks trained with diverse forms of knowledge outperforms the conventional techniques both quantitatively and qualitatively.
translated by 谷歌翻译
最初引入了知识蒸馏,以利用来自单一教师模型的额外监督为学生模型培训。为了提高学生表现,最近的一些变体试图利用多个教师利用不同的知识来源。然而,现有研究主要通过对多种教师预测的平均或将它们与其他无标签策略相结合,将知识集成在多种来源中,可能在可能存在低质量的教师预测存在中误导学生。为了解决这个问题,我们提出了信心感知的多教师知识蒸馏(CA-MKD),该知识蒸馏(CA-MKD)在地面真理标签的帮助下,适用于每个教师预测的样本明智的可靠性,与那些接近单热的教师预测标签分配了大量的重量。此外,CA-MKD包含中间层,以进一步提高学生表现。广泛的实验表明,我们的CA-MKD始终如一地优于各种教师学生架构的所有最先进的方法。
translated by 谷歌翻译
Most existing distillation methods ignore the flexible role of the temperature in the loss function and fix it as a hyper-parameter that can be decided by an inefficient grid search. In general, the temperature controls the discrepancy between two distributions and can faithfully determine the difficulty level of the distillation task. Keeping a constant temperature, i.e., a fixed level of task difficulty, is usually sub-optimal for a growing student during its progressive learning stages. In this paper, we propose a simple curriculum-based technique, termed Curriculum Temperature for Knowledge Distillation (CTKD), which controls the task difficulty level during the student's learning career through a dynamic and learnable temperature. Specifically, following an easy-to-hard curriculum, we gradually increase the distillation loss w.r.t. the temperature, leading to increased distillation difficulty in an adversarial manner. As an easy-to-use plug-in technique, CTKD can be seamlessly integrated into existing knowledge distillation frameworks and brings general improvements at a negligible additional computation cost. Extensive experiments on CIFAR-100, ImageNet-2012, and MS-COCO demonstrate the effectiveness of our method. Our code is available at https://github.com/zhengli97/CTKD.
translated by 谷歌翻译
知识蒸馏是将“知识”从大型模型(教师)转移到更紧凑的(学生)的过程,通常在模型压缩的背景下使用。当两个模型都具有相同的体系结构时,此过程称为自distillation。几项轶事表明,一个自灭的学生可以在持有的数据上胜过老师的表现。在这项工作中,我们系统地研究了许多设置。我们首先表明,即使有一个高度准确的老师,自我介绍也使学生在所有情况下都可以超越老师。其次,我们重新审视了(自我)蒸馏的现有理论解释,并确定矛盾的例子,揭示了这些解释的可能缺点。最后,我们通过损失景观几何形状的镜头为自我鉴定的动态提供了另一种解释。我们进行了广泛的实验,以表明自我验证会导致最小化的最小值,从而导致更好的概括。
translated by 谷歌翻译
知识蒸馏通常涉及如何有效地定义和转移知识从教师到学生。尽管最近的自我监督的对比知识取得了最佳表现,但迫使网络学习此类知识可能会损害对原始班级识别任务的表示。因此,我们采用替代性的自我监督的增强任务来指导网络学习原始识别任务和自我监督的辅助任务的共同分布。它被证明是一种更丰富的知识,可以提高表示能力而不会失去正常的分类能力。此外,以前的方法仅在最终层之间传递概率知识是不完整的。我们建议将几个辅助分类器附加到层次中间特征图中,以生成多样化的自我监督知识,并执行一对一的转移以彻底教授学生网络。我们的方法显着超过了先前的SOTA SSKD,CIFAR-100的平均改善为2.56 \%,并且在广泛使用的网络对上的Imagenet上有0.77 \%的提高。代码可在https://github.com/winycg/hsakd上找到。
translated by 谷歌翻译
机器学习中的知识蒸馏是将知识从名为教师的大型模型转移到一个名为“学生”的较小模型的过程。知识蒸馏是将大型网络(教师)压缩到较小网络(学生)的技术之一,该网络可以部署在手机等小型设备中。当教师和学生之间的网络规模差距增加时,学生网络的表现就会下降。为了解决这个问题,在教师模型和名为助教模型的学生模型之间采用了中间模型,这反过来弥补了教师与学生之间的差距。在这项研究中,我们已经表明,使用多个助教模型,可以进一步改进学生模型(较小的模型)。我们使用加权集合学习将这些多个助教模型组合在一起,我们使用了差异评估优化算法来生成权重值。
translated by 谷歌翻译
最先进的蒸馏方法主要基于中间层的深层特征,而logit蒸馏的重要性被极大地忽略了。为了提供研究逻辑蒸馏的新观点,我们将经典的KD损失重新分为两个部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们凭经验研究并证明了这两个部分的影响:TCKD转移有关训练样本“难度”的知识,而NCKD是Logit蒸馏起作用的重要原因。更重要的是,我们揭示了经典的KD损失是一种耦合的配方,该配方抑制了NCKD的有效性,并且(2)限制了平衡这两个部分的灵活性。为了解决这些问题,我们提出了脱钩的知识蒸馏(DKD),使TCKD和NCKD能够更有效,更灵活地发挥其角色。与基于功能的复杂方法相比,我们的DKD可相当甚至更好的结果,并且在CIFAR-100,ImageNet和MS-Coco数据集上具有更好的培训效率,用于图像分类和对象检测任务。本文证明了Logit蒸馏的巨大潜力,我们希望它对未来的研究有所帮助。该代码可从https://github.com/megvii-research/mdistiller获得。
translated by 谷歌翻译
Model distillation is an effective and widely used technique to transfer knowledge from a teacher to a student network. The typical application is to transfer from a powerful large network or ensemble to a small network, that is better suited to low-memory or fast execution requirements. In this paper, we present a deep mutual learning (DML) strategy where, rather than one way transfer between a static pre-defined teacher and a student, an ensemble of students learn collaboratively and teach each other throughout the training process. Our experiments show that a variety of network architectures benefit from mutual learning and achieve compelling results on CIFAR-100 recognition and Market-1501 person re-identification benchmarks. Surprisingly, it is revealed that no prior powerful teacher network is necessary -mutual learning of a collection of simple student networks works, and moreover outperforms distillation from a more powerful yet static teacher.
translated by 谷歌翻译
自我介绍在训练过程中利用自身的非均匀软监管,并在没有任何运行时成本的情况下提高性能。但是,在训练过程中的开销经常被忽略,但是在巨型模型的时代,培训期间的时间和记忆开销越来越重要。本文提出了一种名为ZIPF标签平滑(ZIPF的LS)的有效自我验证方法,该方法使用网络的直立预测来生成软监管,该软监管在不使用任何对比样本或辅助参数的情况下符合ZIPF分布。我们的想法来自经验观察,即当对网络进行适当训练时,在按样品的大小和平均分类后,应遵循分布的分布,让人联想到ZIPF的自然语言频率统计信息,这是在按样品中的大小和平均值进行排序之后进行的。 。通过在样本级别和整个培训期内强制执行此属性,我们发现预测准确性可以大大提高。使用INAT21细粒分类数据集上的RESNET50,与香草基线相比,我们的技术获得了 +3.61%的准确性增长,而与先前的标签平滑或自我验证策略相比,增益增加了0.88%。该实现可在https://github.com/megvii-research/zipfls上公开获得。
translated by 谷歌翻译
知识蒸馏(KD)是一种有效的方法,可以将知识从大型“教师”网络转移到较小的“学生”网络。传统的KD方法需要大量标记的培训样本和白盒老师(可以访问参数)才能培训好学生。但是,这些资源并不总是在现实世界应用中获得。蒸馏过程通常发生在我们无法访问大量数据的外部政党方面,并且由于安全性和隐私问题,教师没有披露其参数。为了克服这些挑战,我们提出了一种黑盒子少的KD方法,以培训学生很少的未标记培训样本和一个黑盒老师。我们的主要思想是通过使用混合和有条件的变异自动编码器生成一组不同的分布合成图像来扩展训练集。这些合成图像及其从老师获得的标签用于培训学生。我们进行了广泛的实验,以表明我们的方法在图像分类任务上明显优于最近的SOTA/零射击KD方法。代码和型号可在以下网址找到:https://github.com/nphdang/fs-bbt
translated by 谷歌翻译