Learning style refers to a type of training mechanism adopted by an individual to gain new knowledge. As suggested by the VARK model, humans have different learning preferences like visual, auditory, etc., for acquiring and effectively processing information. Inspired by this concept, our work explores the idea of mixed information sharing with model compression in the context of Knowledge Distillation (KD) and Mutual Learning (ML). Unlike conventional techniques that share the same type of knowledge with all networks, we propose to train individual networks with different forms of information to enhance the learning process. We formulate a combined KD and ML framework with one teacher and two student networks that share or exchange information in the form of predictions and feature maps. Our comprehensive experiments with benchmark classification and segmentation datasets demonstrate that with 15% compression, the ensemble performance of networks trained with diverse forms of knowledge outperforms the conventional techniques both quantitatively and qualitatively.
translated by 谷歌翻译
In recent years, Siamese network based trackers have significantly advanced the state-of-the-art in real-time tracking. Despite their success, Siamese trackers tend to suffer from high memory costs, which restrict their applicability to mobile devices with tight memory budgets. To address this issue, we propose a distilled Siamese tracking framework to learn small, fast and accurate trackers (students), which capture critical knowledge from large Siamese trackers (teachers) by a teacher-students knowledge distillation model. This model is intuitively inspired by the one teacher vs. multiple students learning method typically employed in schools. In particular, our model contains a single teacher-student distillation module and a student-student knowledge sharing mechanism. The former is designed using a tracking-specific distillation strategy to transfer knowledge from a teacher to students. The latter is utilized for mutual learning between students to enable in-depth knowledge understanding. Extensive empirical evaluations on several popular Siamese trackers demonstrate the generality and effectiveness of our framework. Moreover, the results on five tracking benchmarks show that the proposed distilled trackers achieve compression rates of up to 18$\times$ and frame-rates of $265$ FPS, while obtaining comparable tracking accuracy compared to base models.
translated by 谷歌翻译
机器学习中的知识蒸馏是将知识从名为教师的大型模型转移到一个名为“学生”的较小模型的过程。知识蒸馏是将大型网络(教师)压缩到较小网络(学生)的技术之一,该网络可以部署在手机等小型设备中。当教师和学生之间的网络规模差距增加时,学生网络的表现就会下降。为了解决这个问题,在教师模型和名为助教模型的学生模型之间采用了中间模型,这反过来弥补了教师与学生之间的差距。在这项研究中,我们已经表明,使用多个助教模型,可以进一步改进学生模型(较小的模型)。我们使用加权集合学习将这些多个助教模型组合在一起,我们使用了差异评估优化算法来生成权重值。
translated by 谷歌翻译
知识蒸馏是通过知识转移模型压缩的有效稳定的方法。传统知识蒸馏(KD)是将来自大型和训练有素的教师网络的知识转移到小型学生网络,这是一种单向过程。最近,已经提出了深度相互学习(DML)来帮助学生网络协同和同时学习。然而,据我们所知,KD和DML从未在统一的框架中共同探索,以解决知识蒸馏问题。在本文中,我们调查教师模型在KD中支持更值得信赖的监督信号,而学生则在DML中捕获教师的类似行为。基于这些观察,我们首先建议将KD与DML联合在统一的框架中。此外,我们提出了一个半球知识蒸馏(SOKD)方法,有效提高了学生和教师的表现。在这种方法中,我们在DML中介绍了同伴教学培训时尚,以缓解学生的模仿困难,并利用KD训练有素的教师提供的监督信号。此外,我们还显示我们的框架可以轻松扩展到基于功能的蒸馏方法。在CiFAR-100和Imagenet数据集上的广泛实验证明了所提出的方法实现了最先进的性能。
translated by 谷歌翻译
混合样品正则化(MSR),例如混合或cutmix,是一种强大的数据增强策略,可以推广卷积神经网络。先前的经验分析说明了MSR与传统的离线知识蒸馏(KD)之间的正交性能增长。更具体地说,可以通过MSR参与顺序蒸馏的训练阶段来增强学生网络。然而,MSR和在线知识蒸馏之间的相互作用,这是一个更强的蒸馏范式,在那里,一群同伴互相学习的合奏仍然没有探索。为了弥合差距,我们首次尝试将cutmix纳入在线蒸馏中,我们从经验上观察到了重大改进。在这个事实的鼓舞下,我们提出了一个更强大的MSR,专门用于在线蒸馏,称为Cut^nMix。此外,一个新颖的在线蒸馏框架是在切割^nmix上设计的,以通过功能水平相互学习和自我启动的老师来增强蒸馏。对CIFAR10和CIFAR100进行六个网络体系结构的全面评估表明,我们的方法可以始终超过最先进的蒸馏方法。
translated by 谷歌翻译
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
translated by 谷歌翻译
近年来,深度卷积神经网络在病理学图像分割方面取得了重大进展。然而,病理图像分割遇到困境,其中更高绩效网络通常需要更多的计算资源和存储。由于病理图像的固有高分辨率,这种现象限制了实际场景中的高精度网络的就业。为了解决这个问题,我们提出了一种用于病理胃癌细分的新型跨层相关(COCO)知识蒸馏网络。知识蒸馏,通过从繁琐的网络从知识转移提高紧凑型网络的性能的一般技术。具体而言,我们的Coco Distillnet模拟了不同层之间的通道混合空间相似性的相关性,然后将这些知识从预培训的繁琐的教师网络传送到非培训的紧凑学生网络。此外,我们还利用了对抗性学习策略来进一步提示被称为对抗性蒸馏(AD)的蒸馏程序。此外,为了稳定我们的培训程序,我们利用无监督的释义模块(PM)来提高教师网络中的知识释义。结果,对胃癌细分数据集进行的广泛实验表明了Coco Distillnet的突出能力,实现了最先进的性能。
translated by 谷歌翻译
在多种方式知识蒸馏研究的背景下,现有方法主要集中在唯一的学习教师最终产出问题。因此,教师网络与学生网络之间存在深处。有必要强制学生网络来学习教师网络的模态关系信息。为了有效利用从教师转移到学生的知识,采用了一种新的模型关系蒸馏范式,通过建模不同的模态之间的关系信息,即学习教师模级克矩阵。
translated by 谷歌翻译
知识蒸馏(KD)是一个有效的框架,旨在将有意义的信息从大型老师转移到较小的学生。通常,KD通常涉及如何定义和转移知识。以前的KD方法通常着重于挖掘各种形式的知识,例如功能地图和精致信息。但是,知识源自主要监督任务,因此是高度特定于任务的。在自我监督的代表学习的最新成功中,我们提出了一项辅助自我实施的增强任务,以指导网络学习更多有意义的功能。因此,我们可以从KD的这项任务中得出软性自我实施的增强分布作为更丰富的黑暗知识。与以前的知识不同,此分布编码从监督和自我监督的特征学习中编码联合知识。除了知识探索之外,我们建议在各个隐藏层上附加几个辅助分支,以充分利用分层特征图。每个辅助分支都被指导学习自学的增强任务,并将这种分布从教师到学生提炼。总体而言,我们称我们的KD方法为等级自我实施的增强知识蒸馏(HSSAKD)。标准图像分类的实验表明,离线和在线HSSAKD都在KD领域达到了最先进的表现。对象检测的进一步转移实验进一步验证了HSSAKD可以指导网络学习更好的功能。该代码可在https://github.com/winycg/hsakd上找到。
translated by 谷歌翻译
Electroencephalogram (EEG) has been one of the common neuromonitoring modalities for real-world brain-computer interfaces (BCIs) because of its non-invasiveness, low cost, and high temporal resolution. Recently, light-weight and portable EEG wearable devices based on low-density montages have increased the convenience and usability of BCI applications. However, loss of EEG decoding performance is often inevitable due to reduced number of electrodes and coverage of scalp regions of a low-density EEG montage. To address this issue, we introduce knowledge distillation (KD), a learning mechanism developed for transferring knowledge/information between neural network models, to enhance the performance of low-density EEG decoding. Our framework includes a newly proposed similarity-keeping (SK) teacher-student KD scheme that encourages a low-density EEG student model to acquire the inter-sample similarity as in a pre-trained teacher model trained on high-density EEG data. The experimental results validate that our SK-KD framework consistently improves motor-imagery EEG decoding accuracy when number of electrodes deceases for the input EEG data. For both common low-density headphone-like and headband-like montages, our method outperforms state-of-the-art KD methods across various EEG decoding model architectures. As the first KD scheme developed for enhancing EEG decoding, we foresee the proposed SK-KD framework to facilitate the practicality of low-density EEG-based BCI in real-world applications.
translated by 谷歌翻译
知识蒸馏最近成为一种流行的技术,以改善卷积神经网络的模型泛化能力。然而,它对图形神经网络的影响小于令人满意的,因为图形拓扑和节点属性可能以动态方式改变,并且在这种情况下,静态教师模型引导学生培训不足。在本文中,我们通过在在线蒸馏时期同时培训一组图形神经网络来解决这一挑战,其中组知识发挥作用作为动态虚拟教师,并且有效地捕获了图形神经网络的结构变化。为了提高蒸馏性能,在学生之间转移两种知识,以增强彼此:在图形拓扑和节点属性中反映信息的本地知识,以及反映课程预测的全局知识。随着香草知识蒸馏等,在利用有效的对抗性循环学习框架,将全球知识与KL分歧转移。广泛的实验验证了我们提出的在线对抗蒸馏方法的有效性。
translated by 谷歌翻译
One of the most efficient methods for model compression is hint distillation, where the student model is injected with information (hints) from several different layers of the teacher model. Although the selection of hint points can drastically alter the compression performance, conventional distillation approaches overlook this fact and use the same hint points as in the early studies. Therefore, we propose a clustering based hint selection methodology, where the layers of teacher model are clustered with respect to several metrics and the cluster centers are used as the hint points. Our method is applicable for any student network, once it is applied on a chosen teacher network. The proposed approach is validated in CIFAR-100 and ImageNet datasets, using various teacher-student pairs and numerous hint distillation methods. Our results show that hint points selected by our algorithm results in superior compression performance compared to state-of-the-art knowledge distillation algorithms on the same student models and datasets.
translated by 谷歌翻译
最初引入了知识蒸馏,以利用来自单一教师模型的额外监督为学生模型培训。为了提高学生表现,最近的一些变体试图利用多个教师利用不同的知识来源。然而,现有研究主要通过对多种教师预测的平均或将它们与其他无标签策略相结合,将知识集成在多种来源中,可能在可能存在低质量的教师预测存在中误导学生。为了解决这个问题,我们提出了信心感知的多教师知识蒸馏(CA-MKD),该知识蒸馏(CA-MKD)在地面真理标签的帮助下,适用于每个教师预测的样本明智的可靠性,与那些接近单热的教师预测标签分配了大量的重量。此外,CA-MKD包含中间层,以进一步提高学生表现。广泛的实验表明,我们的CA-MKD始终如一地优于各种教师学生架构的所有最先进的方法。
translated by 谷歌翻译
在线知识蒸馏会在所有学生模型之间进行知识转移,以减轻对预培训模型的依赖。但是,现有的在线方法在很大程度上依赖于预测分布并忽略了代表性知识的进一步探索。在本文中,我们提出了一种用于在线知识蒸馏的新颖的多尺度功能提取和融合方法(MFEF),其中包括三个关键组成部分:多尺度功能提取,双重注意和功能融合,以生成更有信息的特征图,以用于蒸馏。提出了在通道维度中的多尺度提取利用分界线和catenate,以提高特征图的多尺度表示能力。为了获得更准确的信息,我们设计了双重注意,以适应重要的渠道和空间区域。此外,我们通过功能融合来汇总并融合了以前的处理功能地图,以帮助培训学生模型。关于CIF AR-10,CIF AR-100和Cinic-10的广泛实验表明,MFEF转移了更有益的代表性知识,以蒸馏和胜过各种网络体系结构之间的替代方法
translated by 谷歌翻译
在这项工作中,我们提出了相互信息最大化知识蒸馏(MIMKD)。我们的方法使用对比目标来同时估计,并最大化教师和学生网络之间的本地和全球特征表示的相互信息的下限。我们通过广泛的实验证明,这可以通过将知识从更加性能但计算昂贵的模型转移来改善低容量模型的性能。这可用于产生更好的模型,可以在具有低计算资源的设备上运行。我们的方法灵活,我们可以将具有任意网络架构的教师蒸馏到任意学生网络。我们的经验结果表明,MIMKD优于各种学生教师对的竞争方法,具有不同的架构,以及学生网络的容量极低。我们能够通过从Reset-50蒸馏出来的知识,从基线精度为Shufflenetv2获得74.55%的精度。在Imagenet上,我们使用Reset-34教师网络将Reset-18网络从68.88%提高到70.32%的准确度(1.44%+)。
translated by 谷歌翻译
Often we wish to transfer representational knowledge from one neural network to another. Examples include distilling a large network into a smaller one, transferring knowledge from one sensory modality to a second, or ensembling a collection of models into a single estimator. Knowledge distillation, the standard approach to these problems, minimizes the KL divergence between the probabilistic outputs of a teacher and student network. We demonstrate that this objective ignores important structural knowledge of the teacher network. This motivates an alternative objective by which we train a student to capture significantly more information in the teacher's representation of the data. We formulate this objective as contrastive learning. Experiments demonstrate that our resulting new objective outperforms knowledge distillation and other cutting-edge distillers on a variety of knowledge transfer tasks, including single model compression, ensemble distillation, and cross-modal transfer. Our method sets a new state-of-the-art in many transfer tasks, and sometimes even outperforms the teacher network when combined with knowledge distillation.
translated by 谷歌翻译
AI-powered Medical Imaging has recently achieved enormous attention due to its ability to provide fast-paced healthcare diagnoses. However, it usually suffers from a lack of high-quality datasets due to high annotation cost, inter-observer variability, human annotator error, and errors in computer-generated labels. Deep learning models trained on noisy labelled datasets are sensitive to the noise type and lead to less generalization on the unseen samples. To address this challenge, we propose a Robust Stochastic Knowledge Distillation (RoS-KD) framework which mimics the notion of learning a topic from multiple sources to ensure deterrence in learning noisy information. More specifically, RoS-KD learns a smooth, well-informed, and robust student manifold by distilling knowledge from multiple teachers trained on overlapping subsets of training data. Our extensive experiments on popular medical imaging classification tasks (cardiopulmonary disease and lesion classification) using real-world datasets, show the performance benefit of RoS-KD, its ability to distill knowledge from many popular large networks (ResNet-50, DenseNet-121, MobileNet-V2) in a comparatively small network, and its robustness to adversarial attacks (PGD, FSGM). More specifically, RoS-KD achieves >2% and >4% improvement on F1-score for lesion classification and cardiopulmonary disease classification tasks, respectively, when the underlying student is ResNet-18 against recent competitive knowledge distillation baseline. Additionally, on cardiopulmonary disease classification task, RoS-KD outperforms most of the SOTA baselines by ~1% gain in AUC score.
translated by 谷歌翻译
Figure 1. An illustration of standard knowledge distillation. Despite widespread use, an understanding of when the student can learn from the teacher is missing.
translated by 谷歌翻译
深度学习的巨大成功主要是由于大规模的网络架构和高质量的培训数据。但是,在具有有限的内存和成像能力的便携式设备上部署最近的深层模型仍然挑战。一些现有的作品通过知识蒸馏进行了压缩模型。不幸的是,这些方法不能处理具有缩小图像质量的图像,例如低分辨率(LR)图像。为此,我们采取了开创性的努力,从高分辨率(HR)图像到达将处理LR图像的紧凑型网络模型中学习的繁重网络模型中蒸馏有用的知识,从而推动了新颖的像素蒸馏的当前知识蒸馏技术。为实现这一目标,我们提出了一名教师助理 - 学生(TAS)框架,将知识蒸馏分解为模型压缩阶段和高分辨率表示转移阶段。通过装备新颖的特点超分辨率(FSR)模块,我们的方法可以学习轻量级网络模型,可以实现与重型教师模型相似的准确性,但参数更少,推理速度和较低分辨率的输入。在三个广泛使用的基准,\即,幼崽200-2011,Pascal VOC 2007和ImageNetsub上的综合实验证明了我们方法的有效性。
translated by 谷歌翻译
知识蒸馏是将“知识”从大型模型(教师)转移到更紧凑的(学生)的过程,通常在模型压缩的背景下使用。当两个模型都具有相同的体系结构时,此过程称为自distillation。几项轶事表明,一个自灭的学生可以在持有的数据上胜过老师的表现。在这项工作中,我们系统地研究了许多设置。我们首先表明,即使有一个高度准确的老师,自我介绍也使学生在所有情况下都可以超越老师。其次,我们重新审视了(自我)蒸馏的现有理论解释,并确定矛盾的例子,揭示了这些解释的可能缺点。最后,我们通过损失景观几何形状的镜头为自我鉴定的动态提供了另一种解释。我们进行了广泛的实验,以表明自我验证会导致最小化的最小值,从而导致更好的概括。
translated by 谷歌翻译