在线知识蒸馏(OKD)通过相互利用教师和学生之间的差异来改善所涉及的模型。它们之间的差距上有几个关键的瓶颈 - 例如,为什么以及何时以及何时损害表现,尤其是对学生的表现?如何量化教师和学生之间的差距? - 接受了有限的正式研究。在本文中,我们提出了可切换的在线知识蒸馏(Switokd),以回答这些问题。 Switokd的核心思想不是专注于测试阶段的准确性差距,而是通过两种模式之间的切换策略来适应训练阶段的差距,即蒸馏差距 - 专家模式(暂停老师,同时暂停教师保持学生学习)和学习模式(重新启动老师)。为了拥有适当的蒸馏差距,我们进一步设计了一个自适应开关阈值,该阈值提供了有关何时切换到学习模式或专家模式的正式标准,从而改善了学生的表现。同时,老师从我们的自适应切换阈值中受益,并基本上与其他在线艺术保持同步。我们进一步将Switokd扩展到具有两个基础拓扑的多个网络。最后,广泛的实验和分析验证了Switokd在最新面前的分类的优点。我们的代码可在https://github.com/hfutqian/switokd上找到。
translated by 谷歌翻译
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
translated by 谷歌翻译
尽管深层神经网络在各种任务中取得了巨大的成功,但它们不断增加的规模也为部署带来了重要的开销。为了压缩这些模型,提出了知识蒸馏将知识从笨拙(教师)网络转移到轻量级(学生)网络中。但是,老师的指导并不总是改善学生的概括,尤其是当学生和老师之间的差距很大时。以前的作品认为,这是由于老师的高确定性,导致更难适应的标签。为了软化这些标签,我们提出了一种修剪方法,称为预测不确定性扩大(PRUE),以简化教师。具体而言,我们的方法旨在减少教师对数据的确定性,从而为学生产生软预测。我们从经验上研究了提出的方法通过在CIFAR-10/100,Tiny-Imagenet和Imagenet上实验的实验的有效性。结果表明,接受稀疏教师培训的学生网络取得更好的表现。此外,我们的方法允许研究人员从更深的网络中提取知识,以进一步改善学生。我们的代码公开:\ url {https://github.com/wangshaopu/prue}。
translated by 谷歌翻译
Figure 1. An illustration of standard knowledge distillation. Despite widespread use, an understanding of when the student can learn from the teacher is missing.
translated by 谷歌翻译
知识蒸馏是通过知识转移模型压缩的有效稳定的方法。传统知识蒸馏(KD)是将来自大型和训练有素的教师网络的知识转移到小型学生网络,这是一种单向过程。最近,已经提出了深度相互学习(DML)来帮助学生网络协同和同时学习。然而,据我们所知,KD和DML从未在统一的框架中共同探索,以解决知识蒸馏问题。在本文中,我们调查教师模型在KD中支持更值得信赖的监督信号,而学生则在DML中捕获教师的类似行为。基于这些观察,我们首先建议将KD与DML联合在统一的框架中。此外,我们提出了一个半球知识蒸馏(SOKD)方法,有效提高了学生和教师的表现。在这种方法中,我们在DML中介绍了同伴教学培训时尚,以缓解学生的模仿困难,并利用KD训练有素的教师提供的监督信号。此外,我们还显示我们的框架可以轻松扩展到基于功能的蒸馏方法。在CiFAR-100和Imagenet数据集上的广泛实验证明了所提出的方法实现了最先进的性能。
translated by 谷歌翻译
最先进的蒸馏方法主要基于中间层的深层特征,而logit蒸馏的重要性被极大地忽略了。为了提供研究逻辑蒸馏的新观点,我们将经典的KD损失重新分为两个部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们凭经验研究并证明了这两个部分的影响:TCKD转移有关训练样本“难度”的知识,而NCKD是Logit蒸馏起作用的重要原因。更重要的是,我们揭示了经典的KD损失是一种耦合的配方,该配方抑制了NCKD的有效性,并且(2)限制了平衡这两个部分的灵活性。为了解决这些问题,我们提出了脱钩的知识蒸馏(DKD),使TCKD和NCKD能够更有效,更灵活地发挥其角色。与基于功能的复杂方法相比,我们的DKD可相当甚至更好的结果,并且在CIFAR-100,ImageNet和MS-Coco数据集上具有更好的培训效率,用于图像分类和对象检测任务。本文证明了Logit蒸馏的巨大潜力,我们希望它对未来的研究有所帮助。该代码可从https://github.com/megvii-research/mdistiller获得。
translated by 谷歌翻译
Despite the fact that deep neural networks are powerful models and achieve appealing results on many tasks, they are too large to be deployed on edge devices like smartphones or embedded sensor nodes. There have been efforts to compress these networks, and a popular method is knowledge distillation, where a large (teacher) pre-trained network is used to train a smaller (student) network. However, in this paper, we show that the student network performance degrades when the gap between student and teacher is large. Given a fixed student network, one cannot employ an arbitrarily large teacher, or in other words, a teacher can effectively transfer its knowledge to students up to a certain size, not smaller. To alleviate this shortcoming, we introduce multi-step knowledge distillation, which employs an intermediate-sized network (teacher assistant) to bridge the gap between the student and the teacher. Moreover, we study the effect of teacher assistant size and extend the framework to multi-step distillation. Theoretical analysis and extensive experiments on CIFAR-10,100 and ImageNet datasets and on CNN and ResNet architectures substantiate the effectiveness of our proposed approach.
translated by 谷歌翻译
知识蒸馏已成为获得紧凑又有效模型的重要方法。为实现这一目标,培训小型学生模型以利用大型训练有素的教师模型的知识。然而,由于教师和学生之间的能力差距,学生的表现很难达到老师的水平。关于这个问题,现有方法建议通过代理方式减少教师知识的难度。我们认为这些基于代理的方法忽视了教师的知识损失,这可能导致学生遇到容量瓶颈。在本文中,我们从新的角度来缓解能力差距问题,以避免知识损失的目的。我们建议通过对抗性协作学习建立一个更有力的学生,而不是牺牲教师的知识。为此,我们进一步提出了一种逆势协作知识蒸馏(ACKD)方法,有效提高了知识蒸馏的性能。具体来说,我们用多个辅助学习者构建学生模型。同时,我们设计了对抗的对抗性协作模块(ACM),引入注意机制和对抗的学习,以提高学生的能力。四个分类任务的广泛实验显示了拟议的Ackd的优越性。
translated by 谷歌翻译
Most existing distillation methods ignore the flexible role of the temperature in the loss function and fix it as a hyper-parameter that can be decided by an inefficient grid search. In general, the temperature controls the discrepancy between two distributions and can faithfully determine the difficulty level of the distillation task. Keeping a constant temperature, i.e., a fixed level of task difficulty, is usually sub-optimal for a growing student during its progressive learning stages. In this paper, we propose a simple curriculum-based technique, termed Curriculum Temperature for Knowledge Distillation (CTKD), which controls the task difficulty level during the student's learning career through a dynamic and learnable temperature. Specifically, following an easy-to-hard curriculum, we gradually increase the distillation loss w.r.t. the temperature, leading to increased distillation difficulty in an adversarial manner. As an easy-to-use plug-in technique, CTKD can be seamlessly integrated into existing knowledge distillation frameworks and brings general improvements at a negligible additional computation cost. Extensive experiments on CIFAR-100, ImageNet-2012, and MS-COCO demonstrate the effectiveness of our method. Our code is available at https://github.com/zhengli97/CTKD.
translated by 谷歌翻译
最初引入了知识蒸馏,以利用来自单一教师模型的额外监督为学生模型培训。为了提高学生表现,最近的一些变体试图利用多个教师利用不同的知识来源。然而,现有研究主要通过对多种教师预测的平均或将它们与其他无标签策略相结合,将知识集成在多种来源中,可能在可能存在低质量的教师预测存在中误导学生。为了解决这个问题,我们提出了信心感知的多教师知识蒸馏(CA-MKD),该知识蒸馏(CA-MKD)在地面真理标签的帮助下,适用于每个教师预测的样本明智的可靠性,与那些接近单热的教师预测标签分配了大量的重量。此外,CA-MKD包含中间层,以进一步提高学生表现。广泛的实验表明,我们的CA-MKD始终如一地优于各种教师学生架构的所有最先进的方法。
translated by 谷歌翻译
在线知识蒸馏会在所有学生模型之间进行知识转移,以减轻对预培训模型的依赖。但是,现有的在线方法在很大程度上依赖于预测分布并忽略了代表性知识的进一步探索。在本文中,我们提出了一种用于在线知识蒸馏的新颖的多尺度功能提取和融合方法(MFEF),其中包括三个关键组成部分:多尺度功能提取,双重注意和功能融合,以生成更有信息的特征图,以用于蒸馏。提出了在通道维度中的多尺度提取利用分界线和catenate,以提高特征图的多尺度表示能力。为了获得更准确的信息,我们设计了双重注意,以适应重要的渠道和空间区域。此外,我们通过功能融合来汇总并融合了以前的处理功能地图,以帮助培训学生模型。关于CIF AR-10,CIF AR-100和Cinic-10的广泛实验表明,MFEF转移了更有益的代表性知识,以蒸馏和胜过各种网络体系结构之间的替代方法
translated by 谷歌翻译
知识蒸馏(KD)是一个有效的框架,旨在将有意义的信息从大型老师转移到较小的学生。通常,KD通常涉及如何定义和转移知识。以前的KD方法通常着重于挖掘各种形式的知识,例如功能地图和精致信息。但是,知识源自主要监督任务,因此是高度特定于任务的。在自我监督的代表学习的最新成功中,我们提出了一项辅助自我实施的增强任务,以指导网络学习更多有意义的功能。因此,我们可以从KD的这项任务中得出软性自我实施的增强分布作为更丰富的黑暗知识。与以前的知识不同,此分布编码从监督和自我监督的特征学习中编码联合知识。除了知识探索之外,我们建议在各个隐藏层上附加几个辅助分支,以充分利用分层特征图。每个辅助分支都被指导学习自学的增强任务,并将这种分布从教师到学生提炼。总体而言,我们称我们的KD方法为等级自我实施的增强知识蒸馏(HSSAKD)。标准图像分类的实验表明,离线和在线HSSAKD都在KD领域达到了最先进的表现。对象检测的进一步转移实验进一步验证了HSSAKD可以指导网络学习更好的功能。该代码可在https://github.com/winycg/hsakd上找到。
translated by 谷歌翻译
Often we wish to transfer representational knowledge from one neural network to another. Examples include distilling a large network into a smaller one, transferring knowledge from one sensory modality to a second, or ensembling a collection of models into a single estimator. Knowledge distillation, the standard approach to these problems, minimizes the KL divergence between the probabilistic outputs of a teacher and student network. We demonstrate that this objective ignores important structural knowledge of the teacher network. This motivates an alternative objective by which we train a student to capture significantly more information in the teacher's representation of the data. We formulate this objective as contrastive learning. Experiments demonstrate that our resulting new objective outperforms knowledge distillation and other cutting-edge distillers on a variety of knowledge transfer tasks, including single model compression, ensemble distillation, and cross-modal transfer. Our method sets a new state-of-the-art in many transfer tasks, and sometimes even outperforms the teacher network when combined with knowledge distillation.
translated by 谷歌翻译
深度神经网络的合奏表现出了卓越的性能,但是它们的沉重计算成本阻碍将它们应用于资源有限的环境。它激发了从合奏老师的知识到较小的学生网络,并且有两个重要的设计选择,用于这种合奏蒸馏:1)如何构建学生网络,以及2)在培训期间应显示哪些数据。在本文中,我们提出了一种平均水平技术,其中有多个子网的学生经过培训以吸收合奏教师的功能多样性,但是这些子网的适当平均进行推理,提供了一个学生网络,没有额外的推理成本。我们还提出了一种扰动策略,该策略寻求投入,从中可以更好地转移到学生的教师中。结合这两个,我们的方法在以前的各种图像分类任务上的方法上有了显着改进。
translated by 谷歌翻译
混合样品正则化(MSR),例如混合或cutmix,是一种强大的数据增强策略,可以推广卷积神经网络。先前的经验分析说明了MSR与传统的离线知识蒸馏(KD)之间的正交性能增长。更具体地说,可以通过MSR参与顺序蒸馏的训练阶段来增强学生网络。然而,MSR和在线知识蒸馏之间的相互作用,这是一个更强的蒸馏范式,在那里,一群同伴互相学习的合奏仍然没有探索。为了弥合差距,我们首次尝试将cutmix纳入在线蒸馏中,我们从经验上观察到了重大改进。在这个事实的鼓舞下,我们提出了一个更强大的MSR,专门用于在线蒸馏,称为Cut^nMix。此外,一个新颖的在线蒸馏框架是在切割^nmix上设计的,以通过功能水平相互学习和自我启动的老师来增强蒸馏。对CIFAR10和CIFAR100进行六个网络体系结构的全面评估表明,我们的方法可以始终超过最先进的蒸馏方法。
translated by 谷歌翻译
基于蒸馏的压缩网络的性能受蒸馏质量的管辖。大型网络(教师)到较小网络(学生)的次优蒸馏的原因主要归因于给定教师与学生对的学习能力中的差距。虽然很难蒸馏所有教师的知识,但可以在很大程度上控制蒸馏质量以实现更好的性能。我们的实验表明,蒸馏品质主要受教师响应的质量来限制,这反过来又受到其反应中存在相似信息的影响。训练有素的大容量老师在学习细粒度辨别性质的过程中丢失了类别之间的相似性信息。没有相似性信息导致蒸馏过程从一个例子 - 许多阶级学习减少到一个示例 - 一类学习,从而限制了教师的不同知识的流程。由于隐式假设只能蒸馏出灌输所知,而不是仅关注知识蒸馏过程,我们仔细审查了知识序列过程。我们认为,对于给定的教师 - 学生对,通过在训练老师的同时找到批量大小和时代数量之间的甜蜜点,可以提高蒸馏品。我们讨论了找到这种甜蜜点以便更好地蒸馏的步骤。我们还提出了蒸馏假设,以区分知识蒸馏和正则化效果之间的蒸馏过程的行为。我们在三个不同的数据集中进行我们的所有实验。
translated by 谷歌翻译
知识蒸馏是一种培训小型学生网络的流行技术,以模仿更大的教师模型,例如网络的集合。我们表明,虽然知识蒸馏可以改善学生泛化,但它通常不得如此普遍地工作:虽然在教师和学生的预测分布之间,甚至在学生容量的情况下,通常仍然存在令人惊讶的差异完美地匹配老师。我们认为优化的困难是为什么学生无法与老师匹配的关键原因。我们还展示了用于蒸馏的数据集的细节如何在学生与老师匹配的紧密关系中发挥作用 - 以及教师矛盾的教师并不总是导致更好的学生泛化。
translated by 谷歌翻译
知识蒸馏(KD)已广泛发展并增强了各种任务。经典的KD方法将KD损失添加到原始的跨熵(CE)损失中。我们尝试分解KD损失,以探索其与CE损失的关系。令人惊讶的是,我们发现它可以被视为CE损失和额外损失的组合,其形式与CE损失相同。但是,我们注意到额外的损失迫使学生学习教师绝对概率的相对可能性。此外,这两个概率的总和是不同的,因此很难优化。为了解决这个问题,我们修改了配方并提出分布式损失。此外,我们将教师的目标输出作为软目标,提出软损失。结合软损失和分布式损失,我们提出了新的KD损失(NKD)。此外,我们将学生的目标输出稳定,将其视为无需教师的培训的软目标,并提出了无教师的新KD损失(TF-NKD)。我们的方法在CIFAR-100和Imagenet上实现了最先进的性能。例如,以Resnet-34为老师,我们将Imagenet TOP-1的RESNET18的TOP-1精度从69.90%提高到71.96%。在没有教师的培训中,Mobilenet,Resnet-18和Swintransformer-tiny的培训占70.04%,70.76%和81.48%,分别比基线高0.83%,0.86%和0.30%。该代码可在https://github.com/yzd-v/cls_kd上找到。
translated by 谷歌翻译
知识蒸馏(KD)是压缩边缘设备深层分类模型的有效工具。但是,KD的表现受教师和学生网络之间较大容量差距的影响。最近的方法已诉诸KD的多个教师助手(TA)设置,该设置依次降低了教师模型的大小,以相对弥合这些模型之间的尺寸差距。本文提出了一种称为“知识蒸馏”课程专家选择的新技术,以有效地增强在容量差距问题下对紧凑型学生的学习。该技术建立在以下假设的基础上:学生网络应逐渐使用分层的教学课程来逐步指导,因为它可以从较低(较高的)容量教师网络中更好地学习(硬)数据样本。具体而言,我们的方法是一种基于TA的逐渐的KD技术,它每个输入图像选择单个教师,该课程是基于通过对图像进行分类的难度驱动的课程的。在这项工作中,我们凭经验验证了我们的假设,并对CIFAR-10,CIFAR-100,CINIC-10和Imagenet数据集进行了严格的实验,并在类似VGG的模型,Resnets和WideresNets架构上显示出提高的准确性。
translated by 谷歌翻译
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that ``smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
translated by 谷歌翻译