Conditional normalizing flows can generate diverse image samples for solving inverse problems. Most normalizing flows for inverse problems in imaging employ the conditional affine coupling layer that can generate diverse images quickly. However, unintended severe artifacts are occasionally observed in the output of them. In this work, we address this critical issue by investigating the origins of these artifacts and proposing the conditions to avoid them. First of all, we empirically and theoretically reveal that these problems are caused by ``exploding variance'' in the conditional affine coupling layer for certain out-of-distribution (OOD) conditional inputs. Then, we further validated that the probability of causing erroneous artifacts in pixels is highly correlated with a Mahalanobis distance-based OOD score for inverse problems in imaging. Lastly, based on our investigations, we propose a remark to avoid exploding variance and then based on it, we suggest a simple remedy that substitutes the affine coupling layers with the modified rational quadratic spline coupling layers in normalizing flows, to encourage the robustness of generated image samples. Our experimental results demonstrated that our suggested methods effectively suppressed critical artifacts occurring in normalizing flows for super-resolution space generation and low-light image enhancement without compromising performance.
translated by 谷歌翻译
超级分辨率是一个不良问题,其中基本真理的高分辨率图像仅代表合理解决方案的空间中的一种可能性。然而,主导范式是采用像素 - 明智的损失,例如L_1,其驱动预测模糊的平均值。当与对抗性损失相结合时,这导致了根本相互矛盾的目标,这降低了最终质量。我们通过重新审视L_1丢失来解决此问题,并表明它对应于单层条件流程。灵感来自这一关系,我们探讨了一般流动作为L_1目标的忠诚替代品。我们证明,在与对抗性损失结合时,更深流量的灵活性导致更好的视觉质量和一致性。我们对三个数据集和比例因子进行广泛的用户研究,其中我们的方法被证明了为光逼真的超分辨率优于最先进的方法。代码和培训的型号可在:git.io/adflow
translated by 谷歌翻译
诸如归一化流的生成网络可以在增强逆问题之前作为基于学习以实现高质量结果。然而,当在反转期间遍历潜伏空间时,潜伏空间载体可能不会留在所需的高维标准高斯分布中的典型样本。结果,达到高保真解决方案可能具有挑战性,特别是在存在噪声和基于物理的模型的情况下。为了解决这个问题,我们建议使用新颖的可微分数据相关层重新参数化和高斯潜伏的载体,其中通过解决优化问题来定义自定义运算符。这些所提出的层强制实施反转以在高斯典型的潜在空间集中找到可行的解决方案。我们测试并验证了我们在图像去剔除任务和eikonal断层扫描的技术 - 一种PDE受限的逆问题,实现了高保真效果。
translated by 谷歌翻译
可逆的神经网络(Inns)已被用于设计生成模型,实现节省内存梯度计算,并解决逆问题。在这项工作中,我们展示了普通二手纪念架构遭受爆炸逆,因此易于变得数值不可逆转。在广泛的Inn用例中,我们揭示了包括在分配和分配的变化(OOD)数据的变化公式的不适用性的失败,用于节省内存返回的不正确渐变,以及无法从标准化流量模型中采样。我们进一步推出了普通架构原子构建块的双嘴唇特性。这些见解对旅馆的稳定性然后提供了前进的方法来解决这些故障。对于本地可释放足够的任务,如记忆保存的倒退,我们提出了一种灵活且高效的常规器。对于必要的全球可逆性的问题,例如在ood数据上应用标准化流动,我们展示了设计稳定的旅馆构建块的重要性。
translated by 谷歌翻译
我描述了使用规定规则作为替代物的训练流模型的技巧,以最大程度地发出可能性。此技巧的实用性限制在非条件模型中,但是该方法的扩展应用于数据和条件信息的最大可能性分布的最大可能性,可用于训练复杂的\ textit \ textit {条件{条件}流模型。与以前的方法不同,此方法非常简单:它不需要明确了解条件分布,辅助网络或其他特定体系结构,或者不需要超出最大可能性的其他损失项,并且可以保留潜在空间和数据空间之间的对应关系。所得模型具有非条件流模型的所有属性,对意外输入具有鲁棒性,并且可以预测在给定输入上的解决方案的分布。它们具有预测代表性的保证,并且是解决高度不确定问题的自然和强大方法。我在易于可视化的玩具问题上演示了这些属性,然后使用该方法成功生成类条件图像并通过超分辨率重建高度退化的图像。
translated by 谷歌翻译
磁共振光谱成像(MRSI)是量化体内代谢物的必不可少的工具,但是低空间分辨率限制了其临床应用。基于深度学习的超分辨率方法为改善MRSI的空间分辨率提供了有希望的结果,但是与实验获得的高分辨率图像相比,超级分辨图像通常是模糊的。已经使用生成对抗网络进行了尝试,以提高图像视觉质量。在这项工作中,我们考虑了另一种类型的生成模型,即基于流的模型,与对抗网络相比,训练更稳定和可解释。具体而言,我们提出了一个基于流动的增强器网络,以提高超分辨率MRSI的视觉质量。与以前的基于流的模型不同,我们的增强器网络包含了来自其他图像模式(MRI)的解剖信息,并使用可学习的基础分布。此外,我们施加指南丢失和数据一致性丢失,以鼓励网络在保持高忠诚度的同时以高视觉质量生成图像。从25名高级神经胶质瘤患者获得的1H-MRSI数据集上进行的实验表明,我们的增强子网络的表现优于对抗网络和基线基线方法。我们的方法还允许视觉质量调整和不确定性估计。
translated by 谷歌翻译
通过将自然图像的复杂分布近似通过可逆神经网络(INN)近似于潜在空间中的简单拖延分布,已成功地用于生成图像超分辨率(SR)。这些模型可以使用潜在空间中的随机采样点从一个低分辨率(LR)输入中生成多个逼真的SR图像,从而模拟图像升级的不足的性质,其中多个高分辨率(HR)图像对应于同一LR。最近,INN中的可逆过程也通过双向图像重新缩放模型(如IRN和HCFLOW)成功使用,以优化降尺度和逆向上尺度的关节,从而显着改善了高尺度的图像质量。尽管它们也被优化用于图像降尺度,但图像降尺度的不良性质可以根据不同的插值内核和重新采样方法将一个HR图像缩小到多个LR图像。除了代表图像放大的不确定性的原始缩小潜在变量外,还引入了图像降压过程中的模型变化。这种双重可变变量增强功能适用于不同的图像重新缩放模型,并且在广泛的实验中显示,它可以始终如一地提高图像升级精度,而无需牺牲缩小的LR图像中的图像质量。它还显示可有效增强基于Inn的其他模型,用于图像恢复应用(例如图像隐藏)。
translated by 谷歌翻译
仅使用少量数据学习神经网络是一个重要的研究主题,具有巨大的应用潜力。在本文中,我们介绍了基于归一化流量的成像中反问题的变异建模的常规化器。我们的常规器称为PatchNR,涉及在很少的图像的贴片上学习的正常流。特别是,培训独立于考虑的逆问题,因此可以将相同的正规化程序用于在同一类图像上作用的不同前向操作员。通过研究斑块的分布与整个图像类别的分布,我们证明我们的变分模型确实是一种地图方法。如果有其他监督信息,我们的模型可以推广到有条件的补丁。材料图像和低剂量或限量角度计算机断层扫描(CT)的层分辨率的数值示例表明,我们的方法在具有相似假设的方法之间提供了高质量的结果,但仅需要很少的数据。
translated by 谷歌翻译
在实践中,很难收集配对的培训数据,但是不合格的样本广泛存在。当前的方法旨在通过探索损坏的数据和清洁数据之间的关系来从未配对样本中生成合成的培训数据。这项工作提出了Lud-Vae,这是一种从边际分布中采样的数据中学习关节概率密度函数的深层生成方法。我们的方法基于一个经过精心设计的概率图形模型,在该模型中,干净和损坏的数据域在条件上是独立的。使用变异推断,我们最大化证据下限(ELBO)以估计关节概率密度函数。此外,我们表明在推理不变假设下没有配对样品的情况下,ELBO是可以计算的。该属性在未配对的环境中提供了我们方法的数学原理。最后,我们将我们的方法应用于现实世界图像denoising,超分辨率和低光图像增强任务,并使用Lud-vae生成的合成数据训练模型。实验结果验证了我们方法比其他方法的优势。
translated by 谷歌翻译
机器学习模型通常培训端到端和监督设置,使用配对(输入,输出)数据。示例包括最近的超分辨率方法,用于在(低分辨率,高分辨率)图像上培训。然而,这些端到端的方法每当输入中存在分布偏移时需要重新训练(例如,夜间图像VS日光)或相关的潜在变量(例如,相机模糊或手动运动)。在这项工作中,我们利用最先进的(SOTA)生成模型(这里是Stylegan2)来构建强大的图像前提,这使得贝叶斯定理应用于许多下游重建任务。我们的方法是通过生成模型(BRGM)的贝叶斯重建,使用单个预先训练的发生器模型来解决不同的图像恢复任务,即超级分辨率和绘画,通过与不同的前向腐败模型相结合。我们将发电机模型的重量保持固定,并通过估计产生重建图像的输入潜在的跳过载体来重建图像来估计图像。我们进一步使用变分推理来近似潜伏向量的后部分布,我们对多种解决方案进行采样。我们在三个大型和多样化的数据集中展示了BRGM:(i)来自Flick的60,000个图像面向高质量的数据集(II)来自MIMIC III的高质量数据集(II)240,000胸X射线,(III)的组合收集5脑MRI数据集,具有7,329个扫描。在所有三个数据集和没有任何DataSet特定的HyperParameter调整,我们的简单方法会在超级分辨率和绘画上对当前的特定任务最先进的方法产生性能竞争力,同时更加稳定,而不需要任何培训。我们的源代码和预先训练的型号可在线获取:https://razvanmarinescu.github.io/brgm/。
translated by 谷歌翻译
图像缩小和升级是两个基本的重新划分操作。一旦图像缩小,由于信息丢失,难以通过Upscaling重建。为了使这两个过程更加兼容并提高重建性能,一些努力将它们模拟为联合编码解码任务,其中约束是缩小(即编码)的低分辨率(LR)图像必须保留原始视觉外观。要实现此约束,大多数方法通过使用原始高分辨率(HR)图像的双向较低的LR版本监督缩减模块。然而,这种双向LR引导可以是随后的上升(即解码)的次优,并限制最终的重建性能。在本文中,不直接应用LR引导,我们提出了一种额外的可逆性流动指导模块(FGM),其可以在较次编制的情况下将次要表示转换为视觉上可粘合图像并在升级期间重新转换。从FGM的可逆性受益,较次要的代表可以摆脱LR指导,不会打扰较低的升级过程。它允许我们删除对缩小模块的限制,并以端到端的方式优化缩减和上升模块。以这种方式,这两个模块可以协作以最大限度地提高HR重建性能。广泛的实验表明,所提出的方法可以在缩小和重建图像上实现最先进的(SOTA)性能。
translated by 谷歌翻译
超声波术提供廉价,广泛可接近和紧凑的医疗成像解决方案。然而,与其他成像方式相比,例如CT和MRI,超声图像臭名昭着地遭受强大的散斑噪声,其源自子波长散射的随机干扰。这恶化了超声图像质量并使解释具有挑战性。我们在此提出了一种基于从高质量MRI图像中学到的深生成前的最大-A-Bouthiori估计的新的无监督超声斑点和图像去噪方法。为了模拟生成组织反射率,我们利用标准化流量,近年来已经表现出在各种应用中建模信号前沿的强大。为了促进拓展,我们将先前和培训我们的流量模型从NYU FastMri(完全采样)数据集的补丁上。然后将该之前用于迭代去噪方案的推理。我们首先验证我们在嘈杂的MRI数据(无前域移位)上的学习前沿的实用程序,然后转向从PICMU和CUBDL数据集的模拟和体内超声图像上的评估性能。结果表明,该方法优于定量和定性的其他(无监督)超声的去噪方法(NLM和OBNLM)。
translated by 谷歌翻译
Point Cloud升级旨在从给定的稀疏中产生密集的点云,这是一项具有挑战性的任务,这是由于点集的不规则和无序的性质。为了解决这个问题,我们提出了一种新型的基于深度学习的模型,称为PU-Flow,该模型结合了正常的流量和权重预测技术,以产生均匀分布在基础表面上的致密点。具体而言,我们利用标准化流的可逆特征来转换欧几里得和潜在空间之间的点,并将UPSMPLING过程作为潜在空间中相邻点的集合,从本地几何环境中自适应地学习。广泛的实验表明,我们的方法具有竞争力,并且在大多数测试用例中,它在重建质量,近距到表面的准确性和计算效率方面的表现优于最先进的方法。源代码将在https://github.com/unknownue/pu-flow上公开获得。
translated by 谷歌翻译
归一化流是突出的深层生成模型,提供了易诊的概率分布和有效密度估计。但是,众所周知,在检测到分配(OOD)输入时,它们是众所周知的,因为它们直接在其潜在空间中对输入表示的本地特征进行了编码。在本文中,我们通过演示流动,如果通过注意机制延伸,可以通过表明流动,可以可靠地检测到包括对抗攻击的异常值。我们的方法不需要对培训的异常数据,并通过在多样化的实验设置中报告最先进的性能来展示我们的ood检测方法的效率。代码在https://github.com/computationalradiationphysphysics/inflow上提供。
translated by 谷歌翻译
现代的深层生成模型可以为从训练分布外部提取的输入分配很高的可能性,从而对开放世界部署中的模型构成威胁。尽管已经对定义新的OOD不确定性测试时间度量的研究进行了很多关注,但这些方法并没有从根本上改变生成模型在训练中的正则和优化。特别是,生成模型被证明过于依赖背景信息来估计可能性。为了解决这个问题,我们提出了一个新颖的OOD检测频率调查学习FRL框架,该框架将高频信息纳入培训中,并指导模型专注于语义相关的功能。 FRL有效地提高了广泛的生成架构的性能,包括变异自动编码器,Glow和PixelCNN ++。在一项新的大规模评估任务中,FRL实现了最先进的表现,表现优于强大的基线可能性遗憾,同时达到了147 $ \ times $ $ $ $ $ \ times $ a的推理速度。广泛的消融表明,FRL在保留图像生成质量的同时改善了OOD检测性能。代码可在https://github.com/mu-cai/frl上找到。
translated by 谷歌翻译
本文提出了图像恢复的新变异推理框架和一个卷积神经网络(CNN)结构,该结构可以解决所提出的框架所描述的恢复问题。较早的基于CNN的图像恢复方法主要集中在网络体系结构设计或培训策略上,具有非盲方案,其中已知或假定降解模型。为了更接近现实世界的应用程序,CNN还接受了整个数据集的盲目培训,包括各种降解。然而,给定有多样化的图像的高质量图像的条件分布太复杂了,无法通过单个CNN学习。因此,也有一些方法可以提供其他先验信息来培训CNN。与以前的方法不同,我们更多地专注于基于贝叶斯观点以及如何重新重新重构目标的恢复目标。具体而言,我们的方法放松了原始的后推理问题,以更好地管理子问题,因此表现得像分裂和互动方案。结果,与以前的框架相比,提出的框架提高了几个恢复问题的性能。具体而言,我们的方法在高斯denoising,现实世界中的降噪,盲图超级分辨率和JPEG压缩伪像减少方面提供了最先进的性能。
translated by 谷歌翻译
Normalizing Flows are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact. The goal of this survey article is to give a coherent and comprehensive review of the literature around the construction and use of Normalizing Flows for distribution learning. We aim to provide context and explanation of the models, review current state-of-the-art literature, and identify open questions and promising future directions.
translated by 谷歌翻译
Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to tractability of the exact log-likelihood, tractability of exact latent-variable inference, and parallelizability of both training and synthesis. In this paper we propose Glow, a simple type of generative flow using an invertible 1 × 1 convolution. Using our method we demonstrate a significant improvement in log-likelihood on standard benchmarks. Perhaps most strikingly, we demonstrate that a generative model optimized towards the plain log-likelihood objective is capable of efficient realisticlooking synthesis and manipulation of large images. The code for our model is available at https://github.com/openai/glow.
translated by 谷歌翻译
基于流量的生成模型最近已成为模拟数据生成的最有效方法之一。实际上,它们是由一系列可逆和可触觉转换构建的。Glow首先使用可逆$ 1 \ times 1 $卷积引入了一种简单的生成流。但是,与标准卷积相比,$ 1 \ times 1 $卷积的灵活性有限。在本文中,我们提出了一种新颖的可逆$ n \ times n $卷积方法,该方法克服了可逆$ 1 \ times 1 $卷积的局限性。此外,我们所提出的网络不仅可以处理和可逆,而且比标准卷积使用的参数少。CIFAR-10,ImageNet和Celeb-HQ数据集的实验表明,我们可逆的$ N \ times n $卷积有助于显着提高生成模型的性能。
translated by 谷歌翻译
高质量的校准不确定性估计对于众多现实世界应用至关重要,尤其是对于基于深度学习的部署的ML系统。虽然贝叶斯深度学习技术允许估计不确定性,但使用大规模数据集培训它们是一个昂贵的过程,并不总是会产生与非贝斯尼亚对应物竞争的模型。此外,许多已经经过培训和部署的高性能深度学习模型本质上都是非拜拜西亚人,并且不提供不确定性估计。为了解决这些问题,我们提出了贝叶斯cap,该贝内斯cap学习了冷冻模型的贝叶斯身份映射,从而估算了不确定性。 Bayescap是一种记忆效率的方法,可以在原始数据集的一小部分中进行训练,从而通过为预测提供了校准的不确定性估计,而没有(i)妨碍模型的性能和(ii),从而增强了预审预学的非bayesian计算机视觉模型。需要从头开始昂贵的型号。所提出的方法对各种架构和任务不可知。我们显示了我们方法对各种各样的任务的功效,这些任务具有多种架构,包括图像超分辨率,脱蓝色,内化和关键应用,例如医学图像翻译。此外,我们将派生的不确定性估计值应用于在自主驾驶深度估计等关键情况下检测分布样本。代码可在https://github.com/explainableml/bayescap上找到。
translated by 谷歌翻译