我描述了使用规定规则作为替代物的训练流模型的技巧,以最大程度地发出可能性。此技巧的实用性限制在非条件模型中,但是该方法的扩展应用于数据和条件信息的最大可能性分布的最大可能性,可用于训练复杂的\ textit \ textit {条件{条件}流模型。与以前的方法不同,此方法非常简单:它不需要明确了解条件分布,辅助网络或其他特定体系结构,或者不需要超出最大可能性的其他损失项,并且可以保留潜在空间和数据空间之间的对应关系。所得模型具有非条件流模型的所有属性,对意外输入具有鲁棒性,并且可以预测在给定输入上的解决方案的分布。它们具有预测代表性的保证,并且是解决高度不确定问题的自然和强大方法。我在易于可视化的玩具问题上演示了这些属性,然后使用该方法成功生成类条件图像并通过超分辨率重建高度退化的图像。
translated by 谷歌翻译
标准化流是生成模型,其通过从简单的基本分布到复杂的目标分布的可逆性转换提供易于变换的工艺模型。然而,该技术不能直接模拟支持未知的低维歧管的数据,在诸如图像数据之类的现实世界域中的公共发生。最近的补救措施的尝试引入了击败归一化流量的中央好处的几何并发症:精确密度估计。我们通过保形嵌入流量来恢复这种福利,这是一种设计流动与贸易密度的流动的流动的框架。我们争辩说,使用培训保育嵌入的标准流量是模型支持数据的最自然的方式。为此,我们提出了一系列保形构建块,并在具有合成和实际数据的实验中应用它们,以证明流动可以在不牺牲贸易可能性的情况下模拟歧管支持的分布。
translated by 谷歌翻译
Unsupervised learning of probabilistic models is a central yet challenging problem in machine learning. Specifically, designing models with tractable learning, sampling, inference and evaluation is crucial in solving this task. We extend the space of such models using real-valued non-volume preserving (real NVP) transformations, a set of powerful, stably invertible, and learnable transformations, resulting in an unsupervised learning algorithm with exact log-likelihood computation, exact and efficient sampling, exact and efficient inference of latent variables, and an interpretable latent space. We demonstrate its ability to model natural images on four datasets through sampling, log-likelihood evaluation, and latent variable manipulations.
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to tractability of the exact log-likelihood, tractability of exact latent-variable inference, and parallelizability of both training and synthesis. In this paper we propose Glow, a simple type of generative flow using an invertible 1 × 1 convolution. Using our method we demonstrate a significant improvement in log-likelihood on standard benchmarks. Perhaps most strikingly, we demonstrate that a generative model optimized towards the plain log-likelihood objective is capable of efficient realisticlooking synthesis and manipulation of large images. The code for our model is available at https://github.com/openai/glow.
translated by 谷歌翻译
在这项工作中,我们为生成自动编码器的变异培训提供了确切的可能性替代方法。我们表明,可以使用可逆层来构建VAE风格的自动编码器,该层提供了可拖动的精确可能性,而无需任何正则化项。这是在选择编码器,解码器和先前体系结构的全部自由的同时实现的,这使我们的方法成为培训现有VAE和VAE风格模型的替换。我们将结果模型称为流中的自动编码器(AEF),因为编码器,解码器和先验被定义为整体可逆体系结构的单个层。我们表明,在对数可能,样本质量和降低性能的方面,该方法的性能比结构上等效的VAE高得多。从广义上讲,这项工作的主要野心是在共同的可逆性和确切的最大可能性的共同框架下缩小正常化流量和自动编码器文献之间的差距。
translated by 谷歌翻译
归一化流量是漫射的,通常是维持尺寸保存,使用模型的可能性训练的模型。我们使用Surve Framework通过新的层构建尺寸减少调节流量,称为漏斗。我们展示了对各种数据集的功效,并表明它改善或匹配现有流量的性能,同时具有降低的潜在空间尺寸。漏斗层可以由各种变换构成,包括限制卷积和馈送前部。
translated by 谷歌翻译
Normalizing Flows are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact. The goal of this survey article is to give a coherent and comprehensive review of the literature around the construction and use of Normalizing Flows for distribution learning. We aim to provide context and explanation of the models, review current state-of-the-art literature, and identify open questions and promising future directions.
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
最近的生成机器学习模型的进展重新推出了密码猜测领域的研究兴趣。基于GAN的数据驱动密码猜测方法和深度潜变量模型的方法显示了令人印象深刻的泛化性能,并为密码猜测提供了引人注目的属性。在本文中,我们提出了Passflow,一种基于流的生成模型方法来猜测。基于流的模型允许精确的对数似然计算和优化,这实现了精确潜在的变量推断。此外,基于流的模型提供了有意义的潜在空间表示,这使得能够探索潜在空间和插值的特定子空间。我们展示了生成流量的适用性到密码猜测的背景下,脱离了主要限于图像生成的连续空间的流网络的先前应用。我们显示Passflow能够在使用培训集中的密码猜测任务中以前的最先进的GaN的方法,这是一个训练集,该训练集是小于前一体的训练集。此外,生成的样本的定性分析表明,通信流可以准确地模拟原始密码的分布,甚至是不匹配的样本非常类似于人类的密码。
translated by 谷歌翻译
归一化的流提供了一种优雅的生成建模方法,可以有效地采样和确切的数据分布的密度评估。但是,当在低维歧管上支持数据分布或具有非平凡的拓扑结构时,当前技术的表现性有显着局限性。我们介绍了一个新的统计框架,用于学习局部正常流的混合物作为数据歧管上的“图表图”。我们的框架增强了最近方法的表现力,同时保留了标准化流的签名特性,他们承认了精确的密度评估。我们通过量化自动编码器(VQ-AE)学习了数据歧管图表的合适地图集,并使用条件流量学习了它们的分布。我们通过实验验证我们的概率框架可以使现有方法更好地模拟数据分布,而不是复杂的歧管。
translated by 谷歌翻译
反事实可以以人类的可解释方式解释神经网络的分类决策。我们提出了一种简单但有效的方法来产生这种反事实。更具体地说,我们执行合适的差异坐标转换,然后在这些坐标中执行梯度上升,以查找反事实,这些反事实是由置信度良好的指定目标类别分类的。我们提出了两种方法来利用生成模型来构建完全或大约差异的合适坐标系。我们使用Riemannian差异几何形状分析了生成过程,并使用各种定性和定量测量方法验证了生成的反事实质量。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
A neural network deployed in the wild may be asked to make predictions for inputs that were drawn from a different distribution than that of the training data. A plethora of work has demonstrated that it is easy to find or synthesize inputs for which a neural network is highly confident yet wrong. Generative models are widely viewed to be robust to such mistaken confidence as modeling the density of the input features can be used to detect novel, out-of-distribution inputs. In this paper we challenge this assumption. We find that the density learned by flow-based models, VAEs, and PixelCNNs cannot distinguish images of common objects such as dogs, trucks, and horses (i.e. CIFAR-10) from those of house numbers (i.e. SVHN), assigning a higher likelihood to the latter when the model is trained on the former. Moreover, we find evidence of this phenomenon when pairing several popular image data sets: FashionMNIST vs MNIST, CelebA vs SVHN, ImageNet vs CIFAR-10 / CIFAR-100 / SVHN. To investigate this curious behavior, we focus analysis on flow-based generative models in particular since they are trained and evaluated via the exact marginal likelihood. We find such behavior persists even when we restrict the flows to constant-volume transformations. These transformations admit some theoretical analysis, and we show that the difference in likelihoods can be explained by the location and variances of the data and the model curvature. Our results caution against using the density estimates from deep generative models to identify inputs similar to the training distribution until their behavior for out-of-distribution inputs is better understood.
translated by 谷歌翻译
归一化流提供一种优雅的方法,用于通过使用可逆的变换获得来自分布的易于密度估计。主要挑战是提高模型的表现,同时保持可逆性约束完整。我们建议通过纳入本地化的自我关注来这样做。然而,传统的自我关注机制不满足获得可逆流的要求,并且不能胆无利地结合到标准化流中。为了解决这一点,我们介绍了一种称为细微的收缩流(ACF)的新方法,它利用了一种特殊类别的基于流的生成模型 - 收缩流。我们证明可以以即插即用的方式将ACF引入到最新的现有技术的状态。这被证明是不仅改善了这些模型的表示力(改善了每次昏暗度量的比特),而且还导致训练它们的速度明显更快。在包括测试图像之间的分隔的定性结果证明样本更加现实并捕获数据中的本地相关性。我们通过使用AWGN进行扰动分析来进一步评估结果,证明ACF模型(特别是点 - 产品变体)表现出更好,更加一致的恢复能力噪声。
translated by 谷歌翻译
我们考虑来自高维数据的信息压缩问题。在许多研究考虑到不可逆转的转变的压缩问题,我们强调了可逆压缩的重要性。我们介绍了具有伪基本架构的新阶段基于似的的AutoEncoders,我们调用伪可逆的编码器。我们提供了对原则的理论解释。我们在MNIST上评估高斯伪可逆编码器,其中我们的模型优于生成图像的锐度的WAE和VAE。
translated by 谷歌翻译
Autoregressive models are among the best performing neural density estimators. We describe an approach for increasing the flexibility of an autoregressive model, based on modelling the random numbers that the model uses internally when generating data. By constructing a stack of autoregressive models, each modelling the random numbers of the next model in the stack, we obtain a type of normalizing flow suitable for density estimation, which we call Masked Autoregressive Flow. This type of flow is closely related to Inverse Autoregressive Flow and is a generalization of Real NVP. Masked Autoregressive Flow achieves state-of-the-art performance in a range of general-purpose density estimation tasks.
translated by 谷歌翻译
从视觉观察中了解动态系统的潜在因果因素被认为是对复杂环境中推理的推理的关键步骤。在本文中,我们提出了Citris,这是一种变异自动编码器框架,从图像的时间序列中学习因果表示,其中潜在的因果因素可能已被干预。与最近的文献相反,Citris利用了时间性和观察干预目标,以鉴定标量和多维因果因素,例如3D旋转角度。此外,通过引入归一化流,可以轻松扩展柑橘,以利用和删除已验证的自动编码器获得的删除表示形式。在标量因果因素上扩展了先前的结果,我们在更一般的环境中证明了可识别性,其中仅因果因素的某些成分受干预措施影响。在对3D渲染图像序列的实验中,柑橘类似于恢复基本因果变量的先前方法。此外,使用预验证的自动编码器,Citris甚至可以概括为因果因素的实例化,从而在SIM到现实的概括中开放了未来的研究领域,以进行因果关系学习。
translated by 谷歌翻译
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.
translated by 谷歌翻译