反事实可以以人类的可解释方式解释神经网络的分类决策。我们提出了一种简单但有效的方法来产生这种反事实。更具体地说,我们执行合适的差异坐标转换,然后在这些坐标中执行梯度上升,以查找反事实,这些反事实是由置信度良好的指定目标类别分类的。我们提出了两种方法来利用生成模型来构建完全或大约差异的合适坐标系。我们使用Riemannian差异几何形状分析了生成过程,并使用各种定性和定量测量方法验证了生成的反事实质量。
translated by 谷歌翻译
鉴于部署更可靠的机器学习系统的重要性,研究界内的机器学习模型的解释性得到了相当大的关注。在计算机视觉应用中,生成反事实方法表示如何扰乱模型的输入来改变其预测,提供有关模型决策的详细信息。目前的方法倾向于产生关于模型决策的琐碎的反事实,因为它们通常建议夸大或消除所分类的属性的存在。对于机器学习从业者,这些类型的反事件提供了很少的价值,因为它们没有提供有关不期望的模型或数据偏差的新信息。在这项工作中,我们确定了琐碎的反事实生成问题,我们建议潜水以缓解它。潜水在使用多样性强制损失限制的解除印章潜在空间中学习扰动,以发现关于模型预测的多个有价值的解释。此外,我们介绍一种机制,以防止模型产生微不足道的解释。 Celeba和Synbols的实验表明,与先前的最先进的方法相比,我们的模型提高了生产高质量有价值解释的成功率。代码可在https://github.com/elementai/beyond- trial-explanations获得。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
在本文中,我们提出了一种新方法,以可靠的方式使用基于几何的变异自动编码器以可靠的方式执行数据增强。我们的方法结合了VAE被视为Riemannian歧管的适当潜在空间建模和新一代方案,该方案产生了更有意义的样本,尤其是在小型数据集的背景下。该方法通过广泛的实验研究进行了测试,在该研究中,其对数据集,分类器和训练样品的稳健性受到了强调。还可以在充满挑战的ADNI数据库上进行医学成像分类任务进行验证,其中使用拟议的VAE框架考虑了少量的3D脑MRIS并增强。在每种情况下,所提出的方法都可以在分类指标中获得显着可靠的增益。例如,在最先进的CNN分类器中,经过50次认知正常(CN)和50例阿尔茨海默氏病(AD)患者的最先进的CNN分类器,平衡准确度从66.3%跃升至74.3%,从77.7%到86.3%。具有243 CN和210 AD,同时提高了极大的敏感性和特异性指标。
translated by 谷歌翻译
标准化流是生成模型,其通过从简单的基本分布到复杂的目标分布的可逆性转换提供易于变换的工艺模型。然而,该技术不能直接模拟支持未知的低维歧管的数据,在诸如图像数据之类的现实世界域中的公共发生。最近的补救措施的尝试引入了击败归一化流量的中央好处的几何并发症:精确密度估计。我们通过保形嵌入流量来恢复这种福利,这是一种设计流动与贸易密度的流动的流动的框架。我们争辩说,使用培训保育嵌入的标准流量是模型支持数据的最自然的方式。为此,我们提出了一系列保形构建块,并在具有合成和实际数据的实验中应用它们,以证明流动可以在不牺牲贸易可能性的情况下模拟歧管支持的分布。
translated by 谷歌翻译
当图像分类器输出错误的类标签时,可以有助于查看图像中的更改会导致正确的分类。这是产生反事实解释的算法。但是,没有易于可扩展的方法来产生这种反应性。我们开发了一种新的算法,为以低计算成本训练的大图像分类器提供了反事实解释。我们经验与文献中的基线进行了对该算法的比较;我们的小说算法一致地找到了更接近原始输入的反事实。与此同时,这些反事实的现实主义与基线相当。所有实验的代码都可以在https://github.com/benedikthoeltgen/deduce提供。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
反事实说明代表了对数据样本的最小变化,其改变其预测分类,通常是从不利的初始类到所需的目标类别。反事实可以帮助回答问题,例如“需要更改此申请以获得贷款的需要?”。一些最近提出的反事实的方法涉及“合理的”反事实和方法的不同定义。然而,许多这些方法是计算密集的,并提供不符合的解释。在这里,我们介绍了锐利的程序,这是一个用于通过创建分类为目标类的输入的投影版本来启动的二进制分类方法。然后在输入及其投影之间的插值线上的潜在空间中生成反事实候选者。然后,我们展示了我们的框架通过使用学习的陈述将样本的核心特征转化为其反事实。此外,我们表明Strappooter在表格和图像数据集上跨越普通质量指标具有竞争力,同时在现实主义测量中的两个可比方法和擅长的级别,使其适用于需要及时解释的高速机器学习应用。
translated by 谷歌翻译
在这项工作中,我们为生成自动编码器的变异培训提供了确切的可能性替代方法。我们表明,可以使用可逆层来构建VAE风格的自动编码器,该层提供了可拖动的精确可能性,而无需任何正则化项。这是在选择编码器,解码器和先前体系结构的全部自由的同时实现的,这使我们的方法成为培训现有VAE和VAE风格模型的替换。我们将结果模型称为流中的自动编码器(AEF),因为编码器,解码器和先验被定义为整体可逆体系结构的单个层。我们表明,在对数可能,样本质量和降低性能的方面,该方法的性能比结构上等效的VAE高得多。从广义上讲,这项工作的主要野心是在共同的可逆性和确切的最大可能性的共同框架下缩小正常化流量和自动编码器文献之间的差距。
translated by 谷歌翻译
基于似然或显式的深层生成模型使用神经网络来构建灵活的高维密度。该公式直接与歧管假设相矛盾,该假设指出,观察到的数据位于嵌入高维环境空间中的低维歧管上。在本文中,我们研究了在这种维度不匹配的情况下,最大可能的训练的病理。我们正式证明,在学习歧管本身而不是分布的情况下,可以实现堕落的优点,而我们称之为多种歧视的现象过于拟合。我们提出了一类两步程序,该过程包括降低降低步骤,然后进行最大样子密度估计,并证明它们在非参数方面恢复了数据生成分布,从而避免了多种歧视。我们还表明,这些过程能够对隐式模型(例如生成对抗网络)学到的流形进行密度估计,从而解决了这些模型的主要缺点。最近提出的几种方法是我们两步程序的实例。因此,我们统一,扩展和理论上证明了一大批模型。
translated by 谷歌翻译
改变特定特征但不是其他特性的输入扰动的反事实示例 - 已经显示用于评估机器学习模型的偏差,例如,对特定的人口组。然而,由于图像的各种特征上的底层的因果结构,生成用于图像的反事实示例是非琐碎的。为了有意义,生成的扰动需要满足因果模型所暗示的约束。我们通过在前瞻性学习推断(ALI)的改进变型中结合结构因果模型(SCM)来提出一种方法,该方法是根据图像的属性之间的因果关系生成反事实。基于所生成的反事实,我们展示了如何解释预先训练的机器学习分类器,评估其偏置,并使用反事实程序缓解偏差。在Morpho-Mnist DataSet上,我们的方法会在质量上产生与基于SCM的Factficuls(DeepScm)的质量相当的反功能,而在更复杂的Celeba DataSet上,我们的方法优于DeepScm在产生高质量的有效反应性时。此外,生成的反事件难以从人类评估实验中的重建图像中无法区分,并且随后使用它们来评估在Celeba数据上培训的标准分类器的公平性。我们表明分类器是偏见的w.r.t.皮肤和头发颜色,以及反事实规则化如何消除这些偏差。
translated by 谷歌翻译
现代生成模型大致分为两个主要类别:(1)可以产生高质量随机样品但无法估算新数据点的确切密度的模型,以及(2)提供精确密度估计的模型,以样本为代价潜在空间的质量和紧凑性。在这项工作中,我们提出了LED,这是一种与gan密切相关的新生成模型,不仅允许有效采样,而且允许有效的密度估计。通过最大程度地提高对数可能的歧视器输出,我们得出了一个替代对抗优化目标,鼓励生成的数据多样性。这种表述提供了对几种流行生成模型之间关系的见解。此外,我们构建了一个基于流的生成器,该发电机可以计算生成样品的精确概率,同时允许低维度变量作为输入。我们在各种数据集上的实验结果表明,我们的密度估计器会产生准确的估计值,同时保留了生成的样品质量良好。
translated by 谷歌翻译
基于梯度的解释算法何时提供有意义的解释?我们提出了一个必要的标准:它们的特征归因需要与数据歧管的切线空间保持一致。为了提供这一假设的证据,我们介绍了一个基于变异自动编码器的框架,该框架允许估计和生成图像歧管。通过跨各种不同数据集的实验 - MNIST,EMNIST,CIFAR10,X射线肺炎和糖尿病性视网膜病变检测 - 我们证明,功能归因与数据的切线相符,结构化和解释性越多倾向于。特别是,由流行的事后方法(例如集成梯度,SmoothGrad和Input $ \ times $梯度)提供的归因往往比原始梯度更与数据歧管更强烈。结果,我们建议解释算法应积极努力将其解释与数据歧管保持一致。在某种程度上,这可以通过对抗训练来实现,从而可以使所有数据集更好地对齐。必须对模型架构或训练算法进行某种形式的调整,因为我们表明单独的神经网络的概括并不意味着模型梯度与数据歧管的一致性。
translated by 谷歌翻译
潜在矢量生成模型的潜在空间中数据点的不同编码可能会导致数据背后的不同解释因素的效率或多或少有效且分开的特征。最近,许多作品都致力于探索特定模型的潜在空间,主要集中在研究特征如何分离以及如何在可见空间中产生所需数据变化的轨迹变化。在这项工作中,我们解决了比较不同模型的潜在空间的更一般问题,寻找它们之间的转换。我们将调查局限于人脸数据歧管的熟悉且在很大程度上研究的生成模型案例。本文报道的令人惊讶的初步结果是(前提是(前提是模型尚未被教导或明确地想象以不同的方式采取行动)简单的线性映射足以从潜在空间传递到另一个信息,同时保留大多数信息。
translated by 谷歌翻译
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
translated by 谷歌翻译
由编码器和解码器组成的自动编码器被广泛用于机器学习,以缩小高维数据的尺寸。编码器将输入数据歧管嵌入到较低的潜在空间中,而解码器表示反向映射,从而提供了潜在空间中的歧管的数据歧管的参数化。嵌入式歧管的良好规律性和结构可以实质性地简化进一步的数据处理任务,例如群集分析或数据插值。我们提出并分析了一种新的正则化,以学习自动编码器的编码器组件:一种损失功能,可倾向于等距,外层平坦的嵌入,并允许自行训练编码器。为了进行训练,假定对于输入歧管上的附近点,他们的本地riemannian距离及其本地riemannian平均水平可以评估。损失函数是通过蒙特卡洛集成计算的,具有不同的采样策略,用于输入歧管上的一对点。我们的主要定理将嵌入图的几何损失函数识别为$ \ gamma $ - 依赖于采样损失功能的限制。使用编码不同明确给定的数据歧管的图像数据的数值测试表明,将获得平滑的歧管嵌入到潜在空间中。由于促进了外部平坦度,这些嵌入足够规律,因此在潜在空间中线性插值可以作为一种可能的后处理。
translated by 谷歌翻译
这项工作提出了一种新的计算框架,用于学习用于真实数据集的明确生成模型。特别地,我们建议在包含多个独立的多维线性子空间组成的特征空间中的多类多维数据分发和{线性判别表示(LDR)}之间学习{\ EM闭环转录}。特别地,我们认为寻求的最佳编码和解码映射可以被配制为编码器和解码器之间的{\ em二手最小游戏的均衡点}。该游戏的自然实用功能是所谓的{\ em速率减少},这是一个简单的信息定理措施,用于特征空间中子空间类似的高斯的混合物之间的距离。我们的配方利用来自控制系统的闭环误差反馈的灵感,避免昂贵的评估和最小化数据空间或特征空间的任意分布之间的近似距离。在很大程度上,这种新的制定统一了自动编码和GaN的概念和益处,并自然将它们扩展到学习多级和多维实际数据的判别和生成}表示的设置。我们对许多基准图像数据集的广泛实验表明了这种新的闭环配方的巨大潜力:在公平的比较下,学习的解码器的视觉质量和编码器的分类性能是竞争力的,并且通常比基于GaN,VAE或基于GaN,VAE或基于GaN,VAE的方法更好的方法两者的组合。我们注意到所以,不同类别的特征在特征空间中明确地映射到大约{em独立的主管子空间};每个类中的不同视觉属性由每个子空间中的{\ em独立主体组件}建模。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
深度生成模型提供了一种系统的方式来学习非线性数据分布,通过一组潜在变量和非线性“生成器”函数映射到输入空间中的潜在点。发电机的非线性意味着潜伏空间给出了输入空间的扭曲视图。在温和的条件下,我们表明这种失真可以通过随机的黎曼公制表征,并证明在该度量下显着改善距离和嵌段。这反过来又改善了潜在空间中的概率分布,采样算法和聚类。我们的几何分析进一步揭示了当前发生器提供了差的方差估计,并提出了一种新的发电机架构,具有巨大改进的方差估计。结果在卷积和完全连接的变分性自动化器上进行了说明,但形式主义容易推广到其他深度生成模型。
translated by 谷歌翻译