深度生成模型提供了一种系统的方式来学习非线性数据分布,通过一组潜在变量和非线性“生成器”函数映射到输入空间中的潜在点。发电机的非线性意味着潜伏空间给出了输入空间的扭曲视图。在温和的条件下,我们表明这种失真可以通过随机的黎曼公制表征,并证明在该度量下显着改善距离和嵌段。这反过来又改善了潜在空间中的概率分布,采样算法和聚类。我们的几何分析进一步揭示了当前发生器提供了差的方差估计,并提出了一种新的发电机架构,具有巨大改进的方差估计。结果在卷积和完全连接的变分性自动化器上进行了说明,但形式主义容易推广到其他深度生成模型。
translated by 谷歌翻译
Riemannian geometry provides powerful tools to explore the latent space of generative models while preserving the inherent structure of the data manifold. Lengths, energies and volume measures can be derived from a pullback metric, defined through the immersion that maps the latent space to the data space. With this in mind, most generative models are stochastic, and so is the pullback metric. Manipulating stochastic objects is strenuous in practice. In order to perform operations such as interpolations, or measuring the distance between data points, we need a deterministic approximation of the pullback metric. In this work, we are defining a new metric as the expected length derived from the stochastic pullback metric. We show this metric is Finslerian, and we compare it with the expected pullback metric. In high dimensions, we show that the metrics converge to each other at a rate of $\mathcal{O}\left(\frac{1}{D}\right)$.
translated by 谷歌翻译
本文通过采取完全几何学的角度引入了对变异自动编码器框架的新解释。我们认为,香草vae自然而然地揭示了其潜在空间中的riemannian结构,并且考虑到这些几何方面可以导致更好的插值和改进的生成程序。这种新提出的采样方法包括从统一分布中的采样组成,该分布本质地从学到的利曼式潜在空间中得出,我们表明,使用此方案可以使香草VAE竞争性且比几个基准数据集中更先进的版本更好。由于已知生成模型对训练样品的数量很敏感,因此我们还强调了该方法在低数据状态下的鲁棒性。
translated by 谷歌翻译
在本文中,我们提出了一种新方法,以可靠的方式使用基于几何的变异自动编码器以可靠的方式执行数据增强。我们的方法结合了VAE被视为Riemannian歧管的适当潜在空间建模和新一代方案,该方案产生了更有意义的样本,尤其是在小型数据集的背景下。该方法通过广泛的实验研究进行了测试,在该研究中,其对数据集,分类器和训练样品的稳健性受到了强调。还可以在充满挑战的ADNI数据库上进行医学成像分类任务进行验证,其中使用拟议的VAE框架考虑了少量的3D脑MRIS并增强。在每种情况下,所提出的方法都可以在分类指标中获得显着可靠的增益。例如,在最先进的CNN分类器中,经过50次认知正常(CN)和50例阿尔茨海默氏病(AD)患者的最先进的CNN分类器,平衡准确度从66.3%跃升至74.3%,从77.7%到86.3%。具有243 CN和210 AD,同时提高了极大的敏感性和特异性指标。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
反事实可以以人类的可解释方式解释神经网络的分类决策。我们提出了一种简单但有效的方法来产生这种反事实。更具体地说,我们执行合适的差异坐标转换,然后在这些坐标中执行梯度上升,以查找反事实,这些反事实是由置信度良好的指定目标类别分类的。我们提出了两种方法来利用生成模型来构建完全或大约差异的合适坐标系。我们使用Riemannian差异几何形状分析了生成过程,并使用各种定性和定量测量方法验证了生成的反事实质量。
translated by 谷歌翻译
基于似然或显式的深层生成模型使用神经网络来构建灵活的高维密度。该公式直接与歧管假设相矛盾,该假设指出,观察到的数据位于嵌入高维环境空间中的低维歧管上。在本文中,我们研究了在这种维度不匹配的情况下,最大可能的训练的病理。我们正式证明,在学习歧管本身而不是分布的情况下,可以实现堕落的优点,而我们称之为多种歧视的现象过于拟合。我们提出了一类两步程序,该过程包括降低降低步骤,然后进行最大样子密度估计,并证明它们在非参数方面恢复了数据生成分布,从而避免了多种歧视。我们还表明,这些过程能够对隐式模型(例如生成对抗网络)学到的流形进行密度估计,从而解决了这些模型的主要缺点。最近提出的几种方法是我们两步程序的实例。因此,我们统一,扩展和理论上证明了一大批模型。
translated by 谷歌翻译
变异自动编码器(VAE)容易受到对抗攻击的影响。对手可以在输入样本中找到一个小的扰动,以更改其潜在编码,从而损害重建。这种脆弱性的一个已知原因是由近似潜在后部和先前分布之间的不匹配引起的潜在空间扭曲。因此,输入的略有变化会导致潜在空间编码发生重大变化。本文表明,数据点的灵敏度是由于编码器网络引起的随机回调度量张量的定向偏置。回调度量张量从输入到潜在空间的无限体积变化。因此,可以将其视为镜头,以分析输入的小变化的影响,从而导致潜在空间中的扭曲。我们建议使用回调度量的特征性评估得分。此外,我们从经验上表明,分数与$ \ beta- $ vae的稳健性参数$ \ beta $相关。
translated by 谷歌翻译
由编码器和解码器组成的自动编码器被广泛用于机器学习,以缩小高维数据的尺寸。编码器将输入数据歧管嵌入到较低的潜在空间中,而解码器表示反向映射,从而提供了潜在空间中的歧管的数据歧管的参数化。嵌入式歧管的良好规律性和结构可以实质性地简化进一步的数据处理任务,例如群集分析或数据插值。我们提出并分析了一种新的正则化,以学习自动编码器的编码器组件:一种损失功能,可倾向于等距,外层平坦的嵌入,并允许自行训练编码器。为了进行训练,假定对于输入歧管上的附近点,他们的本地riemannian距离及其本地riemannian平均水平可以评估。损失函数是通过蒙特卡洛集成计算的,具有不同的采样策略,用于输入歧管上的一对点。我们的主要定理将嵌入图的几何损失函数识别为$ \ gamma $ - 依赖于采样损失功能的限制。使用编码不同明确给定的数据歧管的图像数据的数值测试表明,将获得平滑的歧管嵌入到潜在空间中。由于促进了外部平坦度,这些嵌入足够规律,因此在潜在空间中线性插值可以作为一种可能的后处理。
translated by 谷歌翻译
机器学习中的一个基本问题是从低维潜在空间$ \ MATHCAL {y} $找到映射$ f $到高维观察空间$ \ MATHCAL {x} $。深层神经网络等现代工具能够代表一般的非线性映射。学习者可以轻松找到完美适合所有观察结果的映射。但是,这样的映射通常不被认为是好的,因为它不够简单并且可以过度合适。如何定义简单性?我们试图对非线性映射$ f $施加的信息量进行正式定义。直观地,我们测量了回溯几何形状和潜在空间的内在几何形状之间的局部差异。我们的定义基于信息几何形状,并且独立于经验观察,也不是特定的参数化。我们证明其基本属性,并与相关的机器学习方法讨论关系。
translated by 谷歌翻译
我们研究是否使用两个条件型号$ p(x | z)$和$ q(z | x)$,以使用循环的两个条件型号,我们如何建模联合分配$ p(x,z)$。这是通过观察到深入生成模型的动机,除了可能的型号$ p(x | z)$,通常也使用推理型号$ q(z | x)$来提取表示,但它们通常依赖不表征的先前分配$ P(z)$来定义联合分布,这可能会使后塌和歧管不匹配等问题。为了探讨仅使用$ p(x | z)$和$ q(z | x)$模拟联合分布的可能性,我们研究其兼容性和确定性,对应于其条件分布一致的联合分布的存在和唯一性跟他们。我们为可操作的等价标准开发了一般理论,以实现兼容性,以及足够的确定条件。基于该理论,我们提出了一种新颖的生成建模框架来源,仅使用两个循环条件模型。我们开发方法以实现兼容性和确定性,并使用条件模型适合和生成数据。通过预先删除的约束,Cygen更好地适合数据并捕获由合成和现实世界实验支持的更多代表性特征。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
变异自动编码器(VAE)是最常用的无监督机器学习模型之一。但是,尽管对先前和后验的高斯分布的默认选择通常代表了数学方便的分布通常会导致竞争结果,但我们表明该参数化无法用潜在的超球体结构对数据进行建模。为了解决这个问题,我们建议使用von Mises-fisher(VMF)分布,从而导致超级潜在空间。通过一系列实验,我们展示了这种超球vae或$ \ mathcal {s} $ - vae如何更适合于用超球形结构捕获数据,同时胜过正常的,$ \ mathcal {n} $ - vae-,在其他数据类型的低维度中。http://github.com/nicola-decao/s-vae-tf和https://github.com/nicola-decao/nicola-decao/s-vae-pytorch
translated by 谷歌翻译
在$ \ mathbb {r}^n $中观察到的自然数据通常被限制为$ m $ dimensional歧管$ \ mathcal {m} $,其中$ m <n $。当前的生成模型通过通过神经网络$ f_ \ theta映射$ m $二维潜在变量来表示此流形:\ mathbb {r}^m \ to \ mathbb {r}^n $。我们称之为Pushforward模型的此类过程产生了一个直接的限制:通常不能以单个参数化表示歧管,这意味着尝试这样做的方法将导致计算不稳定性或无法在歧管内学习概率密度。为了解决这个问题,我们建议将$ \ mathcal {m} $建模为神经隐式歧管:神经网络的零零。为了了解$ \ Mathcal {M} $中的数据分布,我们引入了受限的基于能量的模型,该模型使用Langevin Dynamics的约束变体来训练和示例在学习的歧管中。可以用歧管的算术来操纵所得模型,该模型使从业者可以采用工会和模型歧管的交叉点。在有关合成和自然数据的实验中,我们表明,受约束的EBM可以比推送模型更准确地学习具有复杂拓扑的歧管支配分布。
translated by 谷歌翻译
表示学习已成为一种实用的方法,可以在重建方面成功地建立大量高维数据的丰富参数编码。在考虑具有测试训练分布变化的无监督任务时,概率的观点有助于解决预测过度自信和不良校准。但是,由于多种原因,即维度或顽固性问题的诅咒,直接引入贝叶斯推断仍然是一个艰难的问题。 Laplace近似(LA)在这里提供了一个解决方案,因为可以通过二阶Taylor膨胀在参数空间的某些位置通过二阶Taylor膨胀来建立重量的高斯近似值。在这项工作中,我们为洛杉矶启发的无监督表示学习提供了贝叶斯自动编码器。我们的方法实现了迭代的拉普拉斯更新,以获得新型自动编码器证据的新变化下限。二阶部分衍生物的巨大计算负担是通过Hessian矩阵的近似来跳过的。从经验上讲,我们通过为分布外检测提供了良好的不确定性,用于差异几何形状的大地测量和缺失数据归思的方法来证明拉普拉斯自动编码器的可伸缩性和性能。
translated by 谷歌翻译
近似复杂的概率密度是现代统计中的核心问题。在本文中,我们介绍了变分推理(VI)的概念,这是一种机器学习中的流行方法,该方法使用优化技术来估计复杂的概率密度。此属性允许VI汇聚速度比经典方法更快,例如Markov Chain Monte Carlo采样。概念上,VI通过选择一个概率密度函数,然后找到最接近实际概率密度的家庭 - 通常使用Kullback-Leibler(KL)发散作为优化度量。我们介绍了缩窄的证据,以促进近似的概率密度,我们审查了平均场变分推理背后的想法。最后,我们讨论VI对变分式自动编码器(VAE)和VAE-生成的对抗网络(VAE-GAN)的应用。用本文,我们的目标是解释VI的概念,并通过这种方法协助协助。
translated by 谷歌翻译
使用显式密度建模的生成模型(例如,变形式自动码码器,基于流动的生成模型)涉及从已知分布的映射,例如,从已知分布中找到映射。高斯,到未知的输入分布。这通常需要搜索一类非线性函数(例如,由深神经网络表示)。在实践中有效,相关的运行时/内存成本可以迅速增加,通常是应用程序中所需性能的函数。我们提出了一个更便宜的(更简单)的策略来估算基于内核传输运算符中的已知结果的此映射。我们表明我们的配方能够实现高效的分布近似和采样,并提供令人惊讶的良好的经验性能,与强大的基线有利,但有很大的运行时储蓄。我们表明该算法在小样本大小设置(脑成像)中也表现良好。
translated by 谷歌翻译
Normalizing Flows are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact. The goal of this survey article is to give a coherent and comprehensive review of the literature around the construction and use of Normalizing Flows for distribution learning. We aim to provide context and explanation of the models, review current state-of-the-art literature, and identify open questions and promising future directions.
translated by 谷歌翻译
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
translated by 谷歌翻译
随机过程提供了数学上优雅的方式模型复杂数据。从理论上讲,它们为可以编码广泛有趣的假设的功能类提供了灵活的先验。但是,实际上,难以通过优化或边缘化来有效推断,这一问题进一步加剧了大数据和高维输入空间。我们提出了一种新颖的变性自动编码器(VAE),称为先前的编码变量自动编码器($ \ pi $ vae)。 $ \ pi $ vae是有限的交换且Kolmogorov一致的,因此是一个连续的随机过程。我们使用$ \ pi $ vae学习功能类的低维嵌入。我们表明,我们的框架可以准确地学习表达功能类,例如高斯流程,也可以学习函数的属性以启用统计推断(例如log高斯过程的积分)。对于流行的任务,例如空间插值,$ \ pi $ vae在准确性和计算效率方面都达到了最先进的性能。也许最有用的是,我们证明了所学的低维独立分布的潜在空间表示提供了一种优雅,可扩展的方法,可以在概率编程语言(例如Stan)中对随机过程进行贝叶斯推断。
translated by 谷歌翻译