反事实说明代表了对数据样本的最小变化,其改变其预测分类,通常是从不利的初始类到所需的目标类别。反事实可以帮助回答问题,例如“需要更改此申请以获得贷款的需要?”。一些最近提出的反事实的方法涉及“合理的”反事实和方法的不同定义。然而,许多这些方法是计算密集的,并提供不符合的解释。在这里,我们介绍了锐利的程序,这是一个用于通过创建分类为目标类的输入的投影版本来启动的二进制分类方法。然后在输入及其投影之间的插值线上的潜在空间中生成反事实候选者。然后,我们展示了我们的框架通过使用学习的陈述将样本的核心特征转化为其反事实。此外,我们表明Strappooter在表格和图像数据集上跨越普通质量指标具有竞争力,同时在现实主义测量中的两个可比方法和擅长的级别,使其适用于需要及时解释的高速机器学习应用。
translated by 谷歌翻译
我们提出了一种新颖的生成方法,用于根据表征剂的行为的结果变量来生成强化学习(RL)剂的看不见和合理的反事实示例。我们的方法使用变异自动编码器来训练潜在空间,该空间共同编码与代理商行为有关的观测和结果变量的信息。反事实是使用该潜在空间中的遍历生成的,通过梯度驱动的更新以及对从示例池中抽出的情况进行的潜在插值生成。其中包括提高生成示例的可能性的更新,从而提高了产生的反事实的合理性。从三个RL环境中的实验中,我们表明这些方法产生的反事实是与纯粹的结果驱动或基于病例的基准相比,它们更合理且与其查询更接近。最后,我们表明,经过联合训练的潜在训练,可以重建输入观察结果和行为结果变量,从而在训练有素的潜在现象中产生更高质量的反事实,仅重建了观察输入。
translated by 谷歌翻译
鉴于部署更可靠的机器学习系统的重要性,研究界内的机器学习模型的解释性得到了相当大的关注。在计算机视觉应用中,生成反事实方法表示如何扰乱模型的输入来改变其预测,提供有关模型决策的详细信息。目前的方法倾向于产生关于模型决策的琐碎的反事实,因为它们通常建议夸大或消除所分类的属性的存在。对于机器学习从业者,这些类型的反事件提供了很少的价值,因为它们没有提供有关不期望的模型或数据偏差的新信息。在这项工作中,我们确定了琐碎的反事实生成问题,我们建议潜水以缓解它。潜水在使用多样性强制损失限制的解除印章潜在空间中学习扰动,以发现关于模型预测的多个有价值的解释。此外,我们介绍一种机制,以防止模型产生微不足道的解释。 Celeba和Synbols的实验表明,与先前的最先进的方法相比,我们的模型提高了生产高质量有价值解释的成功率。代码可在https://github.com/elementai/beyond- trial-explanations获得。
translated by 谷歌翻译
Counterfactual explanation is a common class of methods to make local explanations of machine learning decisions. For a given instance, these methods aim to find the smallest modification of feature values that changes the predicted decision made by a machine learning model. One of the challenges of counterfactual explanation is the efficient generation of realistic counterfactuals. To address this challenge, we propose VCNet-Variational Counter Net-a model architecture that combines a predictor and a counterfactual generator that are jointly trained, for regression or classification tasks. VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem. Our contribution is the generation of counterfactuals that are close to the distribution of the predicted class. This is done by learning a variational autoencoder conditionally to the output of the predictor in a join-training fashion. We present an empirical evaluation on tabular datasets and across several interpretability metrics. The results are competitive with the state-of-the-art method.
translated by 谷歌翻译
反事实可以以人类的可解释方式解释神经网络的分类决策。我们提出了一种简单但有效的方法来产生这种反事实。更具体地说,我们执行合适的差异坐标转换,然后在这些坐标中执行梯度上升,以查找反事实,这些反事实是由置信度良好的指定目标类别分类的。我们提出了两种方法来利用生成模型来构建完全或大约差异的合适坐标系。我们使用Riemannian差异几何形状分析了生成过程,并使用各种定性和定量测量方法验证了生成的反事实质量。
translated by 谷歌翻译
当图像分类器输出错误的类标签时,可以有助于查看图像中的更改会导致正确的分类。这是产生反事实解释的算法。但是,没有易于可扩展的方法来产生这种反应性。我们开发了一种新的算法,为以低计算成本训练的大图像分类器提供了反事实解释。我们经验与文献中的基线进行了对该算法的比较;我们的小说算法一致地找到了更接近原始输入的反事实。与此同时,这些反事实的现实主义与基线相当。所有实验的代码都可以在https://github.com/benedikthoeltgen/deduce提供。
translated by 谷歌翻译
为了解释来自可差异的概率模型的不确定性估计,最近的工作已经提出了用于给定数据点的单一反事实潜在的不确定性解释(CLUE),其中模型不确定,识别单个,歧管改变到输入,使得模型变为更确定于其预测。我们拓宽了探索{\ delta} -clue,这是潜在空间原始输入的{\ delta}球中的潜在线索集。我们研究了这样的套装的多样性,并发现许多线索是多余的;因此,我们提出了各种线索({\ nabla} -clue),一组线索,每个线索各自提出了一种明显的解释,以及如何减少与输入相关联的不确定性。然后,我们进一步提出了全球摊销线索(Glam-Clue),这是一种独特的和新的方法,它在特定的不确定输入组上学习摊销映射,将它们和有效地将它们的单一函数调用转换为模型将确定的输入。我们的实验表明,{\ delta} -clue,{\ nabla} -clue,以及Glam-clue所有地址线索的缺点,并为从业者提供了对不确定性估计的有益解释。
translated by 谷歌翻译
Post-hoc explanations of machine learning models are crucial for people to understand and act on algorithmic predictions. An intriguing class of explanations is through counterfactuals, hypothetical examples that show people how to obtain a different prediction. We posit that effective counterfactual explanations should satisfy two properties: feasibility of the counterfactual actions given user context and constraints, and diversity among the counterfactuals presented. To this end, we propose a framework for generating and evaluating a diverse set of counterfactual explanations based on determinantal point processes. To evaluate the actionability of counterfactuals, we provide metrics that enable comparison of counterfactual-based methods to other local explanation methods. We further address necessary tradeoffs and point to causal implications in optimizing for counterfactuals. Our experiments on four real-world datasets show that our framework can generate a set of counterfactuals that are diverse and well approximate local decision boundaries, outperforming prior approaches to generating diverse counterfactuals. We provide an implementation of the framework at https://github.com/microsoft/DiCE. CCS CONCEPTS• Applied computing → Law, social and behavioral sciences.
translated by 谷歌翻译
Counterfactual explanations have emerged as a popular solution for the eXplainable AI (XAI) problem of elucidating the predictions of black-box deep-learning systems due to their psychological validity, flexibility across problem domains and proposed legal compliance. While over 100 counterfactual methods exist, claiming to generate plausible explanations akin to those preferred by people, few have actually been tested on users ($\sim7\%$). So, the psychological validity of these counterfactual algorithms for effective XAI for image data is not established. This issue is addressed here using a novel methodology that (i) gathers ground truth human-generated counterfactual explanations for misclassified images, in two user studies and, then, (ii) compares these human-generated ground-truth explanations to computationally-generated explanations for the same misclassifications. Results indicate that humans do not "minimally edit" images when generating counterfactual explanations. Instead, they make larger, "meaningful" edits that better approximate prototypes in the counterfactual class.
translated by 谷歌翻译
投影技术经常用于可视化高维数据,使用户能够更好地理解在2D屏幕上的多维空间的总体结构。尽管存在着许多这样的方法,相当小的工作已经逆投影的普及方法来完成 - 绘制投影点,或者更一般的过程中,投影空间回到原来的高维空间。在本文中我们提出NNInv,用近似的任何突起或映射的逆的能力的深学习技术。 NNInv学会重建上的二维投影空间从任意点高维数据,给用户在视觉分析系统所学习的高维表示的能力进行交互。我们提供NNInv的参数空间的分析,并在选择这些参数提供指导。我们通过一系列定量和定性分析的延长NNInv的有效性验证。交互式实例中插值,分级协议,梯度可视化:然后,我们把它应用到三个可视化任务,验证了该方法的效用。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
神经网络在许多科学学科中发挥着越来越大的作用,包括物理学。变形AutoEncoders(VAE)是能够表示在低维潜空间中的高维数据的基本信息,该神经网络具有概率解释。特别是所谓的编码器网络,VAE的第一部分,其将其输入到潜伏空间中的位置,另外在该位置的方差方面提供不确定性信息。在这项工作中,介绍了对AutoEncoder架构的扩展,渔民。在该架构中,借助于Fisher信息度量,不使用编码器中的附加信息信道生成潜在空间不确定性,而是从解码器导出。这种架构具有来自理论观点的优点,因为它提供了从模型的直接不确定性量化,并且还考虑不确定的交叉相关。我们可以通过实验表明,渔民生产比可比较的VAE更准确的数据重建,并且其学习性能也明显较好地缩放了潜伏空间尺寸的数量。
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
在过去的几年中,深层神经网络方法的反向成像问题产生了令人印象深刻的结果。在本文中,我们考虑在跨问题方法中使用生成模型。所考虑的正规派对图像进行了惩罚,这些图像远非生成模型的范围,该模型学会了产生类似于训练数据集的图像。我们命名这个家庭\ textit {生成正规派}。生成常规人的成功取决于生成模型的质量,因此我们提出了一组所需的标准来评估生成模型并指导未来的研究。在我们的数值实验中,我们根据我们所需的标准评估了三种常见的生成模型,自动编码器,变异自动编码器和生成对抗网络。我们还测试了三个不同的生成正规疗法仪,关于脱毛,反卷积和断层扫描的逆问题。我们表明,逆问题的限制解决方案完全位于生成模型的范围内可以给出良好的结果,但是允许与发电机范围的小偏差产生更一致的结果。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
高维数据的歧管假设假设数据是通过改变从低维潜在空间获得的一组参数而生成的。深层生成模型(DGM)被广泛用于以无监督的方式学习数据表示。 DGM使用瓶颈体系结构(例如变异自动编码器(VAE))参数化数据空间中的基础低维歧管。 VAE的瓶颈尺寸被视为取决于数据集的超参数,并在广泛调整后在设计时间固定。由于大多数实际数据集的内在维度尚不清楚,因此固有维度与选择为超参数的潜在维度之间存在不匹配。这种不匹配可能会对表示形式学习和样本生成任务的模型性能产生负面影响。本文提出了相关性编码网络(RENS):一种新型的基于VAE的概率VAE框架,该框架在潜在空间中使用自动相关性确定(ARD)来学习数据特定的瓶颈维度。每个潜在维度的相关性是直接从数据以及使用随机梯度下降的其他模型参数以及适合非高斯先验的重新聚集技巧的其他模型参数中学到的。我们利用深处的概念来捕获数据和潜在空间中的置换统计属性,以确定相关性。所提出的框架是一般且灵活的,可用于最先进的VAE模型,该模型利用正规化器在潜在空间中施加特定特征(例如,脱离)。通过对合成和公共图像数据集进行了广泛的实验,我们表明,所提出的模型了解了相关的潜在瓶颈维度,而不会损害样品的表示和发电质量。
translated by 谷歌翻译
这项研究通过对三种不同类型的模型进行基准评估来调查机器学习模型对产生反事实解释的影响:决策树(完全透明,可解释的,白色盒子模型),随机森林(一种半解释,灰色盒模型)和神经网络(完全不透明的黑盒模型)。我们在五个不同数据集(Compas,成人,德国,德语,糖尿病和乳腺癌)中使用四种算法(DICE,WatchERCF,原型和GrowingSpheresCF)测试了反事实生成过程。我们的发现表明:(1)不同的机器学习模型对反事实解释的产生没有影响; (2)基于接近性损失函数的唯一算法是不可行的,不会提供有意义的解释; (3)在不保证反事实生成过程中的合理性的情况下,人们无法获得有意义的评估结果。如果对当前的最新指标进行评估,则不考虑其内部机制中不合理的算法将导致偏见和不可靠的结论; (4)强烈建议对定性分析(以及定量分析),以确保对反事实解释和偏见的潜在识别进行强有力的分析。
translated by 谷歌翻译
Agricultural image recognition tasks are becoming increasingly dependent on deep learning (DL); however, despite the excellent performance of DL, it is difficult to comprehend the type of logic or features of the input image it uses during decision making. Knowing the logic or features is highly crucial for result verification, algorithm improvement, training data improvement, and knowledge extraction. However, the explanations from the current heatmap-based algorithms are insufficient for the abovementioned requirements. To address this, this paper details the development of a classification and explanation method based on a variational autoencoder (VAE) architecture, which can visualize the variations of the most important features by visualizing the generated images that correspond to the variations of those features. Using the PlantVillage dataset, an acceptable level of explainability was achieved without sacrificing the classification accuracy. The proposed method can also be extended to other crops as well as other image classification tasks. Further, application systems using this method for disease identification tasks, such as the identification of potato blackleg disease, potato virus Y, and other image classification tasks, are currently being developed.
translated by 谷歌翻译
近年来,由于其对复杂分布进行建模的能力,深层生成模型引起了越来越多的兴趣。在这些模型中,变异自动编码器已被证明是计算有效的,并且在多个领域中产生了令人印象深刻的结果。在这一突破之后,为了改善原始出版物而进行了广泛的研究,从而导致各种不同的VAE模型响应不同的任务。在本文中,我们介绍了Pythae,这是一个多功能的开源Python库,既可以提供统一的实现和专用框架,允许直接,可重现且可靠地使用生成自动编码器模型。然后,我们建议使用此库来执行案例研究基准测试标准,在其中我们介绍并比较了19个生成自动编码器模型,代表了下游任务的一些主要改进,例如图像重建,生成,分类,聚类,聚类和插值。可以在https://github.com/clementchadebec/benchmark_vae上找到开源库。
translated by 谷歌翻译