回归或分类问题中缺少的协变量可以禁止直接使用先进的工具进行进一步分析。最近的研究已经实现了现代机器学习算法的升值越来越大的趋势。它起源于它们在不同学习问题中显示有利预测准确性的能力。在这项工作中,我们通过仿真分析了在基于机器学习和预测的基于机器学习方法时,缺少协变的回归学习问题之间的归零精确度和预测准确性之间的相互作用。此外,我们在使用预测设置中使用统计推理过程时,我们探讨了升级性能,例如(有效)预测间隔的覆盖率。我们的分析基于UCI机器学习存储库提供的实证数据集和广泛的仿真研究。
translated by 谷歌翻译
无穷小夹刀是一种估计参数模型方差的通用方法,最近也用于某些集合方法。在本文中,我们扩展了无穷小折刀,以估计任意两种模型之间的协方差。这可用于量化模型组合的不确定性,或构建测试统计信息,以比较使用相同训练数据集拟合的模型的不同模型或组合。本文中的具体示例使用了随机森林和M估计剂等模型的增强组合。我们还研究了其在XGBOOST模型的神经网络和集合上的应用。我们通过广泛的模拟及其在北京住房数据中的应用来说明差异估计的疗效,并证明了无穷小折刀协方差估算的理论一致性。
translated by 谷歌翻译
在许多学科中,异质治疗效果(HTE)的估计至关重要,从个性化医学到经济学等等。在随机试验和观察性研究中,随机森林已被证明是一种灵活而有力的HTE估计方法。尤其是Athey,Tibshirani和Wager(2019)引入的“因果森林”,以及包装GRF中的R实施。 Seibold,Zeileis和Hothorn(2018)引入了一种称为“基于模型的森林”的相关方法,该方法旨在随机试验,并同时捕获预后和预测变量的效果,并在R包装模型中进行模块化实现。 。在这里,我们提出了一种统一的观点,它超出了理论动机,并研究了哪些计算元素使因果森林如此成功,以及如何将它们与基于模型的森林的优势融合在一起。为此,我们表明,可以通过相同的参数和L2损耗下加性模型的模型假设来理解这两种方法。这种理论上的见解使我们能够实施“基于模型的因果林”的几种口味,并在计算机中剖析其不同元素。将原始的因果森林和基于模型的森林与基准研究中的新混合版本进行了比较,该研究探讨了随机试验和观察环境。在随机设置中,两种方法都执行了AKIN。如果在数据生成过程中存在混淆,我们发现与相应倾向的治疗指标的局部核心是良好性能的主要驱动力。结果的局部核心不太重要,并且可以通过相对于预后和预测效应的同时拆分选择来代替或增强。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
捕获基于协变量的多变量响应载体之间的条件协方差或相关性对于包括神经科学,流行病学和生物医学在内的各个领域很重要。我们提出了一种新方法,称为随机森林(covregrf),以使用随机森林框架估算一个多变量响应的协方差矩阵。随机林木的建造具有专门设计的分裂规则,以最大化儿童节点的样本协方差矩阵估计值之间的差异。我们还提出了对协变量子集的部分效应的显着性检验。我们通过一项模拟研究评估了提出的方法和显着性测试的性能,该研究表明该方法提供了准确的协方差矩阵估计值,并且Type-1误差得到了很好的控制。我们还证明了该方法与甲状腺疾病数据集的应用。
translated by 谷歌翻译
我们引入了一种新颖的方式,将增强功能与高斯工艺和混合效应模型相结合。首先,在高斯过程中先前的平均函数的零或线性假设可以放松,并以灵活的非参数方式分组随机效应模型,其次,第二个在大多数增强算法中做出的独立性假设。前者有利于预测准确性和避免模型错误。后者对于有效学习固定效应预测函数和获得概率预测很重要。我们提出的算法也是用于处理培养树木中高心电图分类变量的新颖解决方案。此外,我们提出了一个扩展名,该扩展是使用维奇亚近似为高斯工艺模型缩放到大数据的,该模型依靠新的结果进行协方差参数推断。与几个模拟和现实世界数据集的现有方法相比,我们获得了提高的预测准确性。
translated by 谷歌翻译
Understanding of the pathophysiology of obstructive lung disease (OLD) is limited by available methods to examine the relationship between multi-omic molecular phenomena and clinical outcomes. Integrative factorization methods for multi-omic data can reveal latent patterns of variation describing important biological signal. However, most methods do not provide a framework for inference on the estimated factorization, simultaneously predict important disease phenotypes or clinical outcomes, nor accommodate multiple imputation. To address these gaps, we propose Bayesian Simultaneous Factorization (BSF). We use conjugate normal priors and show that the posterior mode of this model can be estimated by solving a structured nuclear norm-penalized objective that also achieves rank selection and motivates the choice of hyperparameters. We then extend BSF to simultaneously predict a continuous or binary response, termed Bayesian Simultaneous Factorization and Prediction (BSFP). BSF and BSFP accommodate concurrent imputation and full posterior inference for missing data, including "blockwise" missingness, and BSFP offers prediction of unobserved outcomes. We show via simulation that BSFP is competitive in recovering latent variation structure, as well as the importance of propagating uncertainty from the estimated factorization to prediction. We also study the imputation performance of BSF via simulation under missing-at-random and missing-not-at-random assumptions. Lastly, we use BSFP to predict lung function based on the bronchoalveolar lavage metabolome and proteome from a study of HIV-associated OLD. Our analysis reveals a distinct cluster of patients with OLD driven by shared metabolomic and proteomic expression patterns, as well as multi-omic patterns related to lung function decline. Software is freely available at https://github.com/sarahsamorodnitsky/BSFP .
translated by 谷歌翻译
Precision Medicine根据患者的特征为患者提供定制的治疗方法,是提高治疗效率的一种有希望的方法。大规模的OMICS数据对于患者表征很有用,但是它们的测量经常会随着时间而变化,从而导致纵向数据。随机森林是用于构建预测模型的最先进的机器学习方法之一,并且可以在精密医学中发挥关键作用。在本文中,我们回顾了标准随机森林方法的扩展,以进行纵向数据分析。扩展方法根据其设计的数据结构进行分类。我们考虑单变量和多变量响应,并根据时间效应是否相关,进一步对重复测量进行分类。还提供了审查扩展程序的可用软件实现信息。最后,我们讨论了我们审查的局限性和一些未来的研究指示。
translated by 谷歌翻译
In many applications, it is of interest to identify a parsimonious set of features, or panel, from multiple candidates that achieves a desired level of performance in predicting a response. This task is often complicated in practice by missing data arising from the sampling design or other random mechanisms. Most recent work on variable selection in missing data contexts relies in some part on a finite-dimensional statistical model, e.g., a generalized or penalized linear model. In cases where this model is misspecified, the selected variables may not all be truly scientifically relevant and can result in panels with suboptimal classification performance. To address this limitation, we propose a nonparametric variable selection algorithm combined with multiple imputation to develop flexible panels in the presence of missing-at-random data. We outline strategies based on the proposed algorithm that achieve control of commonly used error rates. Through simulations, we show that our proposal has good operating characteristics and results in panels with higher classification and variable selection performance compared to several existing penalized regression approaches in cases where a generalized linear model is misspecified. Finally, we use the proposed method to develop biomarker panels for separating pancreatic cysts with differing malignancy potential in a setting where complicated missingness in the biomarkers arose due to limited specimen volumes.
translated by 谷歌翻译
In many applications, heterogeneous treatment effects on a censored response variable are of primary interest, and it is natural to evaluate the effects at different quantiles (e.g., median). The large number of potential effect modifiers, the unknown structure of the treatment effects, and the presence of right censoring pose significant challenges. In this paper, we develop a hybrid forest approach called Hybrid Censored Quantile Regression Forest (HCQRF) to assess the heterogeneous effects varying with high-dimensional variables. The hybrid estimation approach takes advantage of the random forests and the censored quantile regression. We propose a doubly-weighted estimation procedure that consists of a redistribution-of-mass weight to handle censoring and an adaptive nearest neighbor weight derived from the forest to handle high-dimensional effect functions. We propose a variable importance decomposition to measure the impact of a variable on the treatment effect function. Extensive simulation studies demonstrate the efficacy and stability of HCQRF. The result of the simulation study also convinces us of the effectiveness of the variable importance decomposition. We apply HCQRF to a clinical trial of colorectal cancer. We achieve insightful estimations of the treatment effect and meaningful variable importance results. The result of the variable importance also confirms the necessity of the decomposition.
translated by 谷歌翻译
考虑在数据集中插入缺失值的问题。一方面,使用迭代插补的一方面,传统的方法可以直接从学习条件分布的简单性和可定制性中受益,但遭受了对每个变量的适当模型规范的实际要求。另一方面,使用深层生成建模的最新方法受益于神经网络功能近似器的学习能力和效率,但通常很难优化和依赖更强大的数据假设。在这项工作中,我们研究了一种嫁给两者优势的方法:我们提出了 *Hyperibute *,这是一种适应性和自动配置列型模型及其超级参数的广义迭代插补框架。实际上,我们为开箱即用的学习者,优化者,模拟器和可扩展的接口提供具体的实现。从经验上讲,我们通过在各种公共数据集上通过全面的实验和敏感性调查了该框架,并证明了其相对于强大基准测试套件而产生准确的归精的能力。与最近的工作相反,我们认为我们的发现构成了对迭代归档范式的强烈辩护。
translated by 谷歌翻译
近年来,深度学习(DL)方法的流行程度急剧增加,并且在生物医学科学中的监督学习问题中的应用显着增长。但是,现代生物医学数据集中缺失数据的较高流行率和复杂性对DL方法提出了重大挑战。在这里,我们在深入学习的广义线性模型的背景下,对缺失数据进行了正式处理,这是一种监督的DL架构,用于回归和分类问题。我们提出了一种新的体系结构,即\ textit {dlglm},这是第一个能够在训练时在输入功能和响应中灵活地说明忽略和不可忽视的缺失模式之一。我们通过统计模拟证明,我们的方法在没有随机(MNAR)缺失的情况下胜过现有的监督学习任务方法。我们从UCI机器学习存储库中对银行营销数据集进行了案例研究,在该数据集中我们预测客户是否基于电话调查数据订阅了产品。
translated by 谷歌翻译
交叉验证是一种广泛使用的技术来估计预测误差,但其行为很复杂且不完全理解。理想情况下,人们想认为,交叉验证估计手头模型的预测错误,适合训练数据。我们证明,普通最小二乘拟合的线性模型并非如此。相反,它估计模型的平均预测误差适合于同一人群提取的其他看不见的训练集。我们进一步表明,这种现象发生在大多数流行的预测误差估计中,包括数据拆分,自举和锦葵的CP。接下来,从交叉验证得出的预测误差的标准置信区间可能的覆盖范围远低于所需水平。由于每个数据点都用于训练和测试,因此每个折叠的测量精度之间存在相关性,因此方差的通常估计值太小。我们引入了嵌套的交叉验证方案,以更准确地估计该方差,并从经验上表明,在传统的交叉验证间隔失败的许多示例中,这种修改导致间隔大致正确覆盖。
translated by 谷歌翻译
We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, in order to adapt to heteroskedascity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this paper is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
translated by 谷歌翻译
R包Doubleml实现了Chernozhukov等人的双重/辩护机器学习框架。 (2018)。它提供了基于机器学习方法的因果模型中估计参数的功能。双机器学习框架由三个关键成分组成:Neyman正交性,高质量的机器学习估计和样品拆分。可以通过MLR3生态系统中可用的各种最新机器学习方法来执行滋扰组件的估计。 Doubleml使得可以在各种因果模型中进行推断,包括部分线性和交互式回归模型及其扩展到仪器变量估计。 Doubleml的面向对象的实现为模型规范具有很高的灵活性,并使其易于扩展。本文是对双机器学习框架和R软件包DOUBLEML的介绍。在具有模拟和真实数据集的可再现代码示例中,我们演示了Doubleml用户如何基于机器学习方法执行有效的推断。
translated by 谷歌翻译
为了进一步开发异构治疗效果的统计推理问题,本文在Breiman(2001)随机林树(RFT)和Wager等人的情况下建立了使用古典的优秀统计属性来参数化非参数问题的(2018)因果树。oLs和基于协变量分数的局部线性间隔的划分,同时保留随机林树木,具有可构造的置信区间和渐近常数特性的优势[athey和Imbens(2016),efron(2014),赌第等(2014年)\ citep {wagert2014Asymptotic},我们根据固定规则提出了一个决策树,根据固定规则与本地样本的多项式估计相结合,我们称之为临时局部线性因果树(QLPRT)和林(QLPRF)。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
Many scientific and engineering challenges-ranging from personalized medicine to customized marketing recommendations-require an understanding of treatment effect heterogeneity. In this paper, we develop a non-parametric causal forest for estimating heterogeneous treatment effects that extends Breiman's widely used random forest algorithm. In the potential outcomes framework with unconfoundedness, we show that causal forests are pointwise consistent for the true treatment effect, and have an asymptotically Gaussian and centered sampling distribution. We also discuss a practical method for constructing asymptotic confidence intervals for the true treatment effect that are centered at the causal forest estimates. Our theoretical results rely on a generic Gaussian theory for a large family of random forest algorithms. To our knowledge, this is the first set of results that allows any type of random forest, including classification and regression forests, to be used for provably valid statistical inference. In experiments, we find causal forests to be substantially more powerful than classical methods based on nearest-neighbor matching, especially in the presence of irrelevant covariates.
translated by 谷歌翻译