考虑在数据集中插入缺失值的问题。一方面,使用迭代插补的一方面,传统的方法可以直接从学习条件分布的简单性和可定制性中受益,但遭受了对每个变量的适当模型规范的实际要求。另一方面,使用深层生成建模的最新方法受益于神经网络功能近似器的学习能力和效率,但通常很难优化和依赖更强大的数据假设。在这项工作中,我们研究了一种嫁给两者优势的方法:我们提出了 *Hyperibute *,这是一种适应性和自动配置列型模型及其超级参数的广义迭代插补框架。实际上,我们为开箱即用的学习者,优化者,模拟器和可扩展的接口提供具体的实现。从经验上讲,我们通过在各种公共数据集上通过全面的实验和敏感性调查了该框架,并证明了其相对于强大基准测试套件而产生准确的归精的能力。与最近的工作相反,我们认为我们的发现构成了对迭代归档范式的强烈辩护。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
在不完整的数据集中对样本进行分类是机器学习从业人员的普遍目的,但并非平凡。在大多数现实世界数据集中发现缺失的数据,这些缺失值通常是使用已建立的方法估算的,然后进行分类现在完成,估算的样本。然后,机器学习研究人员的重点是优化下游分类性能。在这项研究中,我们强调必须考虑插补的质量。我们展示了如何评估质量的常用措施有缺陷,并提出了一类新的差异评分,这些分数着重于该方法重新创建数据的整体分布的程度。总而言之,我们强调了使用不良数据训练的分类器模型的可解释性损害。
translated by 谷歌翻译
缺少数据是机器学习实践中的一个重要问题。从估算方法应保留数据的因果结构的前提下,我们开发了一个正则化方案,鼓励任何基线估算方法与底层数据产生机制发生因果关系。我们的提议是一个因果感知估算算法(奇迹)。奇迹通过同时建模缺失产生机制,令人振奋的归咎与数据的因果结构一致,迭代地改进基线的归纳。我们对综合和各种公开可用数据集进行了广泛的实验,以表明奇迹能够在所有三个缺失场景中始终如一地改善对各种基准方法的归力:随机,完全随意,而不是随机。
translated by 谷歌翻译
我们介绍了数据科学预测生命周期中各个阶段开发和采用自动化的技术和文化挑战的说明概述,从而将重点限制为使用结构化数据集的监督学习。此外,我们回顾了流行的开源Python工具,这些工具实施了针对自动化挑战的通用解决方案模式,并突出了我们认为进步仍然需要的差距。
translated by 谷歌翻译
我们提出了一种基于生成的对冲网络(GANS)的扩展缺失数据载体方法的条件载荷GaN。激励用例是学习 - 排名,现代搜索,推荐系统和信息检索应用的基石。经验排名数据集并不总是遵循标准高斯分布或完全缺少随机(MCAR)机制,这是经典缺失数据载销方法的标准假设。我们的方法提供了一种简单的解决方案,可提供兼容的估算保证,同时放松缺失机制的假设和近似顽固的分布以提高估算质量。我们证明,对于随机(EMAR)的延伸缺失,实现了最佳的GaN载荷,并且在无随机(OAMAR)机制之外,延伸总是缺少的,超出天真MCAR。我们的方法展示了与最先进的基准和各种特征分布相比的开源Microsoft研究排名(MSR)数据集和合成排名数据集的最高估算质量。使用专有的Amazon搜索排名数据集,我们还展示了与地面真实数据相比训练的对GaN illuted数据训练的排名模型的可比排名质量指标。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
对于许多应用科学来说,高维数据中缺少值的存在是无处不在的问题。许多可用的数据挖掘和机器学习方法的严重限制是它们无法处理部分缺失的值,因此结合插补和模型估计的集成方法对于下游分析至关重要。引入了一种称为EMFLOW的计算快速算法,该算法通过使用归一化流量(NF)模型,通过在线版本的期望最大化(EM)算法在潜在空间中执行插补,该模型将数据空间映射到潜在空间。提出的EMFLOW算法是迭代的,涉及更新在线EM和NF的参数。就算法收敛的预测准确性和速度而言,提供了高维多元和图像数据集的广泛实验结果,以说明EMFLOW的出色性能。我们为所有实验提供代码。
translated by 谷歌翻译
比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
机器学习(ML)提供了在具有较大特征空间和复杂关联的数据中通常在数据中检测和建模关联的强大方法。已经开发了许多有用的工具/软件包(例如Scikit-learn),以使数据处理,处理,建模和解释的各种要素可访问。但是,对于大多数研究人员来说,将这些元素组装成严格,可复制,无偏见和有效的数据分析管道并不是微不足道的。自动化机器学习(AUTOML)试图通过简化所有人的ML分析过程来解决这些问题。在这里,我们介绍了一个简单,透明的端到端汽车管道,设计为一个框架,以轻松进行严格的ML建模和分析(最初限于二进制分类)。 Streamline专门设计用于比较数据集,ML算法和其他AutoML工具之间的性能。通过使用精心设计的一系列管道元素,通过提供完全透明且一致的比较基线,它是独特的,包括:(1)探索性分析,(2)基本数据清洁,(3)交叉验证分区,(4)数据缩放和插补,(5)基于滤波器的特征重要性估计,(6)集体特征选择,(7)通过15个已建立算法的“ Optuna”超参数优化的ML建模(包括较不知名的基因编程和基于规则的ML ),(8)跨16个分类指标的评估,(9)模型特征重要性估计,(10)统计显着性比较,以及(11)自动导出所有结果,图,PDF摘要报告以及可以轻松应用于复制数据。
translated by 谷歌翻译
自动化的机器学习(AUTOML)过程可能需要通过不仅机器学习(ML)组件及其超参数的复杂配置空间进行搜索,还需要将它们组合在一起,即形成ML管道。如果该管道配置空间过大,那么固定时间预算可实现的优化效率和模型精度可实现。一个关键的研究问题是,通过利用其历史表现来完成各种ML任务(即元知识),避免对ML管道的不良评估是否可能既可能又实用。以前的经验以分类器/回归器准确性排名的形式来自(1)(1)在历史自动运行期间进行的大量但无尽的管道评估数量,即“机会性”元知识,或(2)全面的交叉 - 通过默认超参数(即“系统”的元知识,对分类器/回归器的验证评估。使用AUTOWEKA4MCPS软件包进行了许多实验,表明(1)机会性/系统的元知识可以改善ML的结果,通常与元知识的相关性以及(2)配置空间扣除在不太保守的情况下是最佳的(2)也不是激进的。但是,元知识的效用和影响急性取决于其发电和剥削的许多方面,并保证了广泛的分析;这些通常在汽车和元学习文献中被忽视/不足。特别是,我们观察到对数据集的“挑战”的强烈敏感性,即选择预测因子的特异性是否会导致性能明显更好。最终,确定这样定义的“困难”数据集对于生成信息丰富的元知识基础和理解最佳搜索空间降低策略至关重要。
translated by 谷歌翻译
近年来,深度学习(DL)方法的流行程度大大增加。尽管在图像数据的分类和操纵中证明了其最初的成功,但DL方法应用于生物医学科学中的问题的应用已显着增长。但是,生物医学数据集中缺失数据的较高流行率和复杂性对DL方法提出了重大挑战。在这里,我们在变化自动编码器(VAE)的背景下提供了对缺失数据的正式处理,这是一种普遍用于缩小尺寸,插补和学习复杂数据的潜在表示的流行无监督的DL体系结构。我们提出了一种新的VAE架构Nimiwae,这是第一个在训练时在输入功能中灵活解释可忽视和不可忽视的缺失模式之一。训练后,可以从缺失数据的后验分布中得出样本,可用于多个插补,从而促进高维不完整数据集的下游分析。我们通过统计模拟证明,我们的方法优于无监督的学习任务和插定精度的现有方法。我们以与12,000名ICU患者有关的EHR数据集的案例研究结束,该数据集具有大量诊断测量和临床结果,其中仅观察到许多特征。
translated by 谷歌翻译
项目反应理论(IRT)是一个无处不在的模型,可以根据他们对问题的回答理解人类行为和态度。大型现代数据集为捕捉人类行为的更多细微差别提供了机会,从而有可能改善心理测量模型,从而改善科学理解和公共政策。但是,尽管较大的数据集允许采用更灵活的方法,但许多用于拟合IRT模型的当代算法也可能具有禁止现实世界应用的巨大计算需求。为了解决这种瓶颈,我们引入了IRT的变异贝叶斯推理算法,并表明它在不牺牲准确性的情况下快速可扩展。将此方法应用于认知科学和教育的五个大规模项目响应数据集中,比替代推理算法更高的对数可能性和更高的准确性。然后,使用这种新的推论方法,我们将IRT概括为具有表现力的贝叶斯响应模型,利用深度学习的最新进展来捕获具有神经网络的非线性项目特征曲线(ICC)。使用TIMSS的特定级数学测试,我们显示我们的非线性IRT模型可以捕获有趣的不对称ICC。该算法实现是开源的,易于使用。
translated by 谷歌翻译
近年来,深度学习(DL)方法的流行程度急剧增加,并且在生物医学科学中的监督学习问题中的应用显着增长。但是,现代生物医学数据集中缺失数据的较高流行率和复杂性对DL方法提出了重大挑战。在这里,我们在深入学习的广义线性模型的背景下,对缺失数据进行了正式处理,这是一种监督的DL架构,用于回归和分类问题。我们提出了一种新的体系结构,即\ textit {dlglm},这是第一个能够在训练时在输入功能和响应中灵活地说明忽略和不可忽视的缺失模式之一。我们通过统计模拟证明,我们的方法在没有随机(MNAR)缺失的情况下胜过现有的监督学习任务方法。我们从UCI机器学习存储库中对银行营销数据集进行了案例研究,在该数据集中我们预测客户是否基于电话调查数据订阅了产品。
translated by 谷歌翻译
在大多数现实世界问题中存在缺失数据,需要仔细处理,以保留下游分析中的预测精度和统计一致性。作为处理缺失数据的金标准,提出了多个归纳(MI)方法来解释归纳不确定性并提供适当的统计推断。在这项工作中,我们通过生成的对抗网络(MI-GAN)提出多种归责,基于深度学习(基于GAN的)多重归名方法,可以在具有理论支持的随机(MAR)机制下缺失工作。Mi-GaN利用最近在有条件的生成对抗性神经作业中的进展,并在归责误差方面表现出对高维数据集的现有最先进的估算方法的强大性能。特别是,MI-GaN在统计推理和计算速度的意义上显着优于其他估算方法。
translated by 谷歌翻译
通常使用参数模型进行经验领域的参数估计,并且此类模型很容易促进统计推断。不幸的是,它们不太可能足够灵活,无法充分建模现实现象,并可能产生偏见的估计。相反,非参数方法是灵活的,但不容易促进统计推断,并且仍然可能表现出残留的偏见。我们探索了影响功能(IFS)的潜力(a)改善初始估计器而无需更多数据(b)增加模型的鲁棒性和(c)促进统计推断。我们首先对IFS进行广泛的介绍,并提出了一种神经网络方法“ Multinet”,该方法使用单个体系结构寻求合奏的多样性。我们还介绍了我们称为“ Multistep”的IF更新步骤的变体,并对不同方法提供了全面的评估。发现这些改进是依赖数据集的,这表明所使用的方法与数据生成过程的性质之间存在相互作用。我们的实验强调了从业人员需要通过不同的估计器组合进行多次分析来检查其发现的一致性。我们还表明,可以改善“自由”的现有神经网络,而无需更多数据,而无需重新训练。
translated by 谷歌翻译
我们查看模型可解释性的特定方面:模型通常需要限制在大小上才能被认为是可解释的,例如,深度5的决策树比深度50中的一个更容易解释。但是,较小的模型也倾向于高偏见。这表明可解释性和准确性之间的权衡。我们提出了一种模型不可知论技术,以最大程度地减少这种权衡。我们的策略是首先学习甲骨文,这是培训数据上高度准确的概率模型。 Oracle预测的不确定性用于学习培训数据的抽样分布。然后,对使用此分布获得的数据样本进行了可解释的模型,通常会导致精确度明显更高。我们将抽样策略作为优化问题。我们的解决方案1具有以下关键的有利属性:(1)它使用固定数量的七个优化变量,而与数据的维度(2)无关,它是模型不可知的 - 因为可解释的模型和甲骨文都可能属于任意性模型家族(3)它具有模型大小的灵活概念,并且可以容纳向量大小(4)它是一个框架,使其能够从优化领域的进度中受益。我们还提出了以下有趣的观察结果:(a)通常,小型模型大小的最佳训练分布与测试分布不同; (b)即使可解释的模型和甲骨文来自高度截然不同的模型家族,也存在这种效果:我们通过使用封闭的复发单位网络作为甲骨文来提高决策树的序列分类精度,从而在文本分类任务上显示此效果。使用字符n-grams; (c)对于模型,我们的技术可用于确定给定样本量的最佳训练样本。
translated by 谷歌翻译