缺少数据是机器学习实践中的一个重要问题。从估算方法应保留数据的因果结构的前提下,我们开发了一个正则化方案,鼓励任何基线估算方法与底层数据产生机制发生因果关系。我们的提议是一个因果感知估算算法(奇迹)。奇迹通过同时建模缺失产生机制,令人振奋的归咎与数据的因果结构一致,迭代地改进基线的归纳。我们对综合和各种公开可用数据集进行了广泛的实验,以表明奇迹能够在所有三个缺失场景中始终如一地改善对各种基准方法的归力:随机,完全随意,而不是随机。
translated by 谷歌翻译
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm may introduce bias for modeling the underlying data distribution. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph constraint. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
利用来自多个域的标记数据来启用没有标签的另一个域中的预测是一个重大但充满挑战的问题。为了解决这个问题,我们介绍了框架Dapdag(\ textbf {d} omain \ textbf {a}通过\ textbf {p} daptation daptation daptation \ textbf {p} erturbed \ textbf {dag}重建),并建议学习对人群进行投入的自动化统计信息给定特征并重建有向的无环图(DAG)作为辅助任务。在观察到的变量中,允许有条件的分布在由潜在环境变量$ e $领导的域变化的变量中,假定基础DAG结构不变。编码器旨在用作$ e $的推理设备,而解码器重建每个观察到的变量,以其DAG中的图形父母和推断的$ e $进行。我们以端到端的方式共同训练编码器和解码器,并对具有混合变量的合成和真实数据集进行实验。经验结果表明,重建DAG有利于近似推断。此外,我们的方法可以在预测任务中与其他基准测试实现竞争性能,具有更好的适应能力,尤其是在目标领域与源域显着不同的目标领域。
translated by 谷歌翻译
本文提出了一种新的因果发现方法,即结构不可知的建模(SAM)。SAM利用条件独立性和分布不对称性,旨在从观察数据中找到潜在的因果结构。该方法基于不同玩家之间的游戏,该游戏将每个变量分布有条件地作为神经网估算,而对手则旨在区分生成的数据与原始数据。结合分布估计,稀疏性和无环限制的学习标准用于通过随机梯度下降来实施图形结构和参数的优化。SAM在合成和真实数据上进行了实验验证。
translated by 谷歌翻译
机器学习模型被批评反映了培训数据中的不公平偏见。我们通过直接引入公平的学习算法来解决这一目标,而不是通过介绍公平的学习算法来解决公平的合成数据,使任何下游学习者都是公平的。从不公平数据生成公平的合成数据 - 同时对潜在的数据生成过程(DGP)留下真实 - 是非微不足道的。在本文中,我们引入了Decaf:用于表格数据的GaN的公平合成数据发生器。通过Decaf,我们将DGP显式作为发电机的输入层中的结构因果模型嵌入,允许在其因果父母上重建每个变量。此过程启用推理时间扩大,其中可以策略性地删除偏置边缘以满足用户定义的公平要求。 Decaf框架是多功能的,与几个公平的定义兼容。在我们的实验中,我们表明Decaf成功地消除了不希望的偏见和 - 与现有方法相比 - 能够产生高质量的合成数据。此外,我们为发电机的收敛和下游模型的公平提供理论担保。
translated by 谷歌翻译
因果表示学习是识别基本因果变量及其从高维观察(例如图像)中的关系的任务。最近的工作表明,可以从观测的时间序列中重建因果变量,假设它们之间没有瞬时因果关系。但是,在实际应用中,我们的测量或帧速率可能比许多因果效应要慢。这有效地产生了“瞬时”效果,并使以前的可识别性结果无效。为了解决这个问题,我们提出了ICITRI,这是一种因果表示学习方法,当具有已知干预目标的完美干预措施时,可以在时间序列中处理瞬时效应。 Icitris从时间观察中识别因果因素,同时使用可区分的因果发现方法来学习其因果图。在三个视频数据集的实验中,Icitris准确地识别了因果因素及其因果图。
translated by 谷歌翻译
考虑在数据集中插入缺失值的问题。一方面,使用迭代插补的一方面,传统的方法可以直接从学习条件分布的简单性和可定制性中受益,但遭受了对每个变量的适当模型规范的实际要求。另一方面,使用深层生成建模的最新方法受益于神经网络功能近似器的学习能力和效率,但通常很难优化和依赖更强大的数据假设。在这项工作中,我们研究了一种嫁给两者优势的方法:我们提出了 *Hyperibute *,这是一种适应性和自动配置列型模型及其超级参数的广义迭代插补框架。实际上,我们为开箱即用的学习者,优化者,模拟器和可扩展的接口提供具体的实现。从经验上讲,我们通过在各种公共数据集上通过全面的实验和敏感性调查了该框架,并证明了其相对于强大基准测试套件而产生准确的归精的能力。与最近的工作相反,我们认为我们的发现构成了对迭代归档范式的强烈辩护。
translated by 谷歌翻译
A common assumption in causal inference from observational data is that there is no hidden confounding. Yet it is, in general, impossible to verify the presence of hidden confounding factors from a single dataset. Under the assumption of independent causal mechanisms underlying the data generating process, we demonstrate a way to detect unobserved confounders when having multiple observational datasets coming from different environments. We present a theory for testable conditional independencies that are only absent during hidden confounding and examine cases where we violate its assumptions: degenerate & dependent mechanisms, and faithfulness violations. Additionally, we propose a procedure to test these independencies and study its empirical finite-sample behavior using simulation studies and semi-synthetic data based on a real-world dataset. In most cases, our theory correctly predicts the presence of hidden confounding, particularly when the confounding bias is~large.
translated by 谷歌翻译
Inferring causal structure poses a combinatorial search problem that typically involves evaluating structures with a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize causal structure learning. Rather than searching over structures, we train a variational inference model to directly predict the causal structure from observational or interventional data. This allows our inference model to acquire domain-specific inductive biases for causal discovery solely from data generated by a simulator, bypassing both the hand-engineering of suitable score functions and the search over graphs. The architecture of our inference model emulates permutation invariances that are crucial for statistical efficiency in structure learning, which facilitates generalization to significantly larger problem instances than seen during training. On synthetic data and semisynthetic gene expression data, our models exhibit robust generalization capabilities when subject to substantial distribution shifts and significantly outperform existing algorithms, especially in the challenging genomics domain. Our code and models are publicly available at: https://github.com/larslorch/avici.
translated by 谷歌翻译
学习数据背后的因果结构对于改善概括和获得高质量的解释是无价的。我们提出了一个新颖的框架,不变结构学习(ISL),旨在通过利用概括作为指示来改善因果结构发现。 ISL将数据分配到不同的环境中,并通过施加一致性约束来学习一个在不同环境中不变的结构。然后,聚集机制基于图形结构选择最佳分类器,该图形结构与从单个环境中学到的结构相比,更准确地反映了数据中的因果机制。此外,我们将ISL扩展到一个自制的学习环境,在该设置中,准确的因果结构发现不依赖任何标签。这种自我监督的ISL通过迭代设置不同的节点作为目标来利用不变的因果关系。在合成和现实世界数据集上,我们证明了ISL准确地发现因果结构,优于替代方法,并且对具有显着分布变化的数据集产生了卓越的概括。
translated by 谷歌翻译
本文研究了从观察数据学习因果关系的问题。我们用二进制图邻接矩阵参数化的形式重整结构方程模型(SEM),并显示,如果原始SEM是可识别的,则可以识别二进制邻接矩阵到真实因果图的超图在温和的条件下。然后,我们利用所述重新设计的SEM来开发一种因果结构学习方法,可以通过利用对非循环性和Gumbel-Softmax方法的平滑表征来实现基于梯度的优化来有效地接受训练,以近似于二进制邻接矩阵。发现获得的条目通常在零或一个附近,并且可以容易地阈值以识别边缘。我们对合成和实时数据集进行实验,以验证所提出的方法的有效性,并表明它容易包括不同的平滑模型功能,并在考虑大多数数据集中实现了大大提高的性能。
translated by 谷歌翻译
We consider the problem of recovering the causal structure underlying observations from different experimental conditions when the targets of the interventions in each experiment are unknown. We assume a linear structural causal model with additive Gaussian noise and consider interventions that perturb their targets while maintaining the causal relationships in the system. Different models may entail the same distributions, offering competing causal explanations for the given observations. We fully characterize this equivalence class and offer identifiability results, which we use to derive a greedy algorithm called GnIES to recover the equivalence class of the data-generating model without knowledge of the intervention targets. In addition, we develop a novel procedure to generate semi-synthetic data sets with known causal ground truth but distributions closely resembling those of a real data set of choice. We leverage this procedure and evaluate the performance of GnIES on synthetic, real, and semi-synthetic data sets. Despite the strong Gaussian distributional assumption, GnIES is robust to an array of model violations and competitive in recovering the causal structure in small- to large-sample settings. We provide, in the Python packages "gnies" and "sempler", implementations of GnIES and our semi-synthetic data generation procedure.
translated by 谷歌翻译
公平的机器学习旨在避免基于\ textit {敏感属性}(例如性别和种族)对个人或子人群的治疗。公平机器学习中的那些方法是基于因果推理确定的歧视和偏见的。尽管基于因果关系的公平学习吸引了越来越多的关注,但当前的方法假设真正的因果图是完全已知的。本文提出了一种一般方法,以实现反事实公平的概念时,当真实的因果图未知。为了能够选择导致反事实公平性的功能,我们得出了条件和算法,以识别\ textit上变量之间的祖先关系{部分定向的无循环图(pdag)},具体来说,可以从一类可学到的dag中学到。观察数据与域知识相结合。有趣的是,我们发现可以实现反事实公平,就好像真正的因果图是完全知道的一样,当提供了特定的背景知识时:敏感属性在因果图中没有祖先。模拟和实际数据集的结果证明了我们方法的有效性。
translated by 谷歌翻译
在非参数环境中,因果结构通常仅在马尔可夫等效性上可识别,并且出于因果推断的目的,学习马尔可夫等效类(MEC)的图形表示很有用。在本文中,我们重新审视了贪婪的等效搜索(GES)算法,该算法被广泛引用为一种基于分数的算法,用于学习基本因果结构的MEC。我们观察到,为了使GES算法在非参数设置中保持一致,不必设计评估图的评分度量。取而代之的是,足以插入有条件依赖度量的一致估计器来指导搜索。因此,我们提出了GES算法的重塑,该算法比基于标准分数的版本更灵活,并且很容易将自己带到非参数设置,并具有条件依赖性的一般度量。此外,我们提出了一种神经条件依赖性(NCD)度量,该措施利用深神经网络的表达能力以非参数方式表征条件独立性。我们根据标准假设建立了重新构架GES算法的最佳性,并使用我们的NCD估计器来决定条件独立性的一致性。这些结果共同证明了拟议的方法。实验结果证明了我们方法在因果发现中的有效性,以及使用我们的NCD度量而不是基于内核的措施的优势。
translated by 谷歌翻译
转移学习中最关键的问题之一是域适应的任务,其中目标是将在一个或多个源域中培训的算法应用于不同(但相关)的目标域。本文在域内存在协变量转变时,涉及域适应。解决此问题的现有因果推断方法的主要限制之一是可扩展性。为了克服这种困难,我们提出了一种避免穷举搜索的算法,并识别基于Markov毯子发现的源和目标域的不变因果特征。 SCTL不需要先前了解因果结构,干预措施的类型或干预目标。有一个与SCTL相关的内在位置,使其实现实际上可扩展且稳健,因为本地因果发现增加了计算独立性测试的力量,并使域适配的任务进行了计算地进行了易行的。我们通过低维和高维设置中的合成和实际数据集显示SCTL的可扩展性和稳健性。
translated by 谷歌翻译
Missing data are ubiquitous in real world applications and, if not adequately handled, may lead to the loss of information and biased findings in downstream analysis. Particularly, high-dimensional incomplete data with a moderate sample size, such as analysis of multi-omics data, present daunting challenges. Imputation is arguably the most popular method for handling missing data, though existing imputation methods have a number of limitations. Single imputation methods such as matrix completion methods do not adequately account for imputation uncertainty and hence would yield improper statistical inference. In contrast, multiple imputation (MI) methods allow for proper inference but existing methods do not perform well in high-dimensional settings. Our work aims to address these significant methodological gaps, leveraging recent advances in neural network Gaussian process (NNGP) from a Bayesian viewpoint. We propose two NNGP-based MI methods, namely MI-NNGP, that can apply multiple imputations for missing values from a joint (posterior predictive) distribution. The MI-NNGP methods are shown to significantly outperform existing state-of-the-art methods on synthetic and real datasets, in terms of imputation error, statistical inference, robustness to missing rates, and computation costs, under three missing data mechanisms, MCAR, MAR, and MNAR.
translated by 谷歌翻译
Effective data imputation demands rich latent ``structure" discovery capabilities from ``plain" tabular data. Recent advances in graph neural networks-based data imputation solutions show their strong structure learning potential by directly translating tabular data as bipartite graphs. However, due to a lack of relations between samples, those solutions treat all samples equally which is against one important observation: ``similar sample should give more information about missing values." This paper presents a novel Iterative graph Generation and Reconstruction framework for Missing data imputation(IGRM). Instead of treating all samples equally, we introduce the concept: ``friend networks" to represent different relations among samples. To generate an accurate friend network with missing data, an end-to-end friend network reconstruction solution is designed to allow for continuous friend network optimization during imputation learning. The representation of the optimized friend network, in turn, is used to further optimize the data imputation process with differentiated message passing. Experiment results on eight benchmark datasets show that IGRM yields 39.13% lower mean absolute error compared with nine baselines and 9.04% lower than the second-best.
translated by 谷歌翻译
本文提出了在适当的监督信息下进行分解的生成因果代表(亲爱的)学习方法。与实施潜在变量独立性的现有分解方法不同,我们考虑了一种基本利益因素可以因果关系相关的一般情况。我们表明,即使在监督下,先前具有独立先验的方法也无法解散因果关系。在这一发现的激励下,我们提出了一种称为DEAR的新的解开学习方法,该方法可以使因果可控的产生和因果代表学习。这种新公式的关键要素是使用结构性因果模型(SCM)作为双向生成模型的先验分布。然后,使用合适的GAN算法与发电机和编码器共同训练了先验,并与有关地面真相因子及其基本因果结构的监督信息合并。我们提供了有关该方法的可识别性和渐近收敛性的理论理由。我们对合成和真实数据集进行了广泛的实验,以证明DEAR在因果可控生成中的有效性,以及在样本效率和分布鲁棒性方面,学到的表示表示对下游任务的好处。
translated by 谷歌翻译
因果推断的一个共同主题是学习观察到的变量(也称为因果发现)之间的因果关系。考虑到大量候选因果图和搜索空间的组合性质,这通常是一项艰巨的任务。也许出于这个原因,到目前为止,大多数研究都集中在相对较小的因果图上,并具有多达数百个节点。但是,诸如生物学之类的领域的最新进展使生成实验数据集,并进行了数千种干预措施,然后进行了数千个变量的丰富分析,从而增加了机会和迫切需要大量因果图模型。在这里,我们介绍了因子定向无环图(F-DAG)的概念,是将搜索空间限制为非线性低级别因果相互作用模型的一种方法。将这种新颖的结构假设与最近的进步相结合,弥合因果发现与连续优化之间的差距,我们在数千个变量上实现了因果发现。此外,作为统计噪声对此估计程序的影响的模型,我们根据随机图研究了F-DAG骨架的边缘扰动模型,并量化了此类扰动对F-DAG等级的影响。该理论分析表明,一组候选F-DAG比整个DAG空间小得多,因此在很难评估基础骨架的高维度中更统计学上的稳定性。我们提出了因子图(DCD-FG)的可区分因果发现,这是对高维介入数据的F-DAG约束因果发现的可扩展实现。 DCD-FG使用高斯非线性低级结构方程模型,并且在模拟中的最新方法以及最新的大型单细胞RNA测序数据集中,与最新方法相比显示出显着改善遗传干预措施。
translated by 谷歌翻译