我们考虑推断稀疏,高维固定多变量高斯时间序列的条件独立图(CIG)的问题。呈现了一种基于频域的基于洛索的跨组频域制定,基于频域足够的观察时间序列的统计。我们研究了乘法器(ADMM)方法的交替方向方法,以优化稀疏组套索惩罚的对数似然。我们为反向PSD估计的Frobenius规范的收敛条件提供了足够的条件,以在所有频率跨越所有频率的真实值,其中允许使用样本大小增加频率的数量。该结果还产生了收敛速度。我们还基于贝叶斯信息标准对调谐参数的选择进行了经验研究,并说明了利用合成和实际数据的数值示例的方法。
translated by 谷歌翻译
我们考虑学习底层多变量数据的稀疏无向图的问题。我们专注于稀疏精度矩阵上的图表拉普拉斯相关的约束,它在与图形节点相关联的随机变量之间编码条件依赖性。在这些约束下,精度矩阵的偏差元素是非正(总阳性),并且精度矩阵可能不是全级。我们调查了对广泛使用惩罚的日志似然方法来强制执行总积极性但不是拉普拉斯结构的修改。然后可以从非对角线精密矩阵中提取图拉普拉斯。乘法器(ADMM)算法的交替方向方法被提出和分析了Laplacian相关约束和套索的约束优化以及自适应套索处罚。基于合成数据的数值结果表明,所提出的约束的自适应套索方法显着优于现有的基于拉普拉斯的方法。我们还评估了我们对实际财务数据的方法。
translated by 谷歌翻译
众所周知,许多网络系统,例如电网,大脑和舆论动态社交网络,都可以遵守保护法。这种现象的例子包括电网中的基尔乔夫法律和社交网络中的意见共识。网络系统中的保护定律可以建模为$ x = b^{*} y $的平衡方程,其中$ b^{*} $的稀疏模式捕获了网络的连接,$ y,x \在\ mathbb {r}^p $中分别是节点上“电势”和“注入流”的向量。节点电位$ y $会导致跨边缘的流量,并且在节点上注入的流量$ x $是网络动力学的无关紧要的。在几个实用的系统中,网络结构通常是未知的,需要从数据估算。为此,可以访问节点电位$ y $的样本,但只有节点注射$ x $的统计信息。在这个重要问题的激励下,我们研究了$ n $ y $ y $ y $ y $ y $ y $ y $ y $ b^{*} $稀疏结构的估计,假设节点注射$ x $遵循高斯分布,并带有已知的发行协方差$ \ sigma_x $。我们建议在高维度中为此问题的新$ \ ell_ {1} $ - 正则最大似然估计器,网络的大小$ p $大于样本量$ n $。我们表明,此优化问题是目标中的凸,并接受了独特的解决方案。在新的相互不一致的条件下,我们在三重$(n,p,d)$上建立了足够的条件,对于$ b^{*} $的精确稀疏恢复是可能的; $ d $是图的程度。我们还建立了在元素最大,Frobenius和运营商规范中回收$ b^{*} $的保证。最后,我们通过对拟议估计量对合成和现实世界数据的性能进行实验验证来补充这些理论结果。
translated by 谷歌翻译
我们考虑使用共享结构估算两个功能无向图形模型之间的差异的问题。在许多应用中,数据自然被认为是随机函数的向量而不是标量的矢量。例如,脑电图(EEG)数据更适当地被视为时间函数。在这样的问题中,不仅可以每个样本测量的函数数量大,而且每个功能都是自身是无限尺寸对象,使估计模型参数具有挑战性。这进一步复杂于曲线通常仅在离散时间点观察到。我们首先定义一个功能差异图,捕获两个功能图形模型之间的差异,并在功能性差分图定义良好时正式表征。然后,我们提出了一种方法,软件,直接估计功能差异图,而不首先估计每个图形。这在各个图形是密集的情况下,这是特别有益的,但差分图是稀疏的。我们表明,融合始终估计功能差图,即使在全面观察和离散的功能路径的高维设置中也是如此。我们通过仿真研究说明了我们方法的有限样本性质。我们还提出了一种竞争方法,该方法是关节功能图形套索,它概括了关节图形套索到功能设置。最后,我们将我们的方法应用于EEG数据,以揭示一群含有酒精使用障碍和对照组的个体之间的功能性脑连接的差异。
translated by 谷歌翻译
我们研究了估计多元高斯分布中的精度矩阵的问题,其中所有部分相关性都是非负面的,也称为多变量完全阳性的顺序阳性($ \ mathrm {mtp} _2 $)。近年来,这种模型得到了重大关注,主要是由于有趣的性质,例如,无论底层尺寸如何,最大似然估计值都存在于两个观察。我们将此问题作为加权$ \ ell_1 $ -norm正常化高斯的最大似然估计下$ \ mathrm {mtp} _2 $约束。在此方向上,我们提出了一种新颖的预计牛顿样算法,该算法包含精心设计的近似牛顿方向,这导致我们具有与一阶方法相同的计算和内存成本的算法。我们证明提出的预计牛顿样算法会聚到问题的最小值。从理论和实验中,我们进一步展示了我们使用加权$ \ ell_1 $ -norm的制剂的最小化器能够正确地恢复基础精密矩阵的支持,而无需在$ \ ell_1 $ -norm中存在不连贯状态方法。涉及合成和实世界数据的实验表明,我们所提出的算法从计算时间透视比最先进的方法显着更有效。最后,我们在金融时序数据中应用我们的方法,这些数据对于显示积极依赖性,在那里我们在学习金融网络上的模块间值方面观察到显着性能。
translated by 谷歌翻译
当节点具有人口统计属性时,概率图形模型中社区结构的推理可能不会与公平约束一致。某些人口统计学可能在某些检测到的社区中过度代表,在其他人中欠代表。本文定义了一个新的$ \ ell_1 $ -regulared伪似然方法,用于公平图形模型选择。特别是,我们假设真正的基础图表​​中存在一些社区或聚类结构,我们寻求从数据中学习稀疏的无向图形及其社区,使得人口统计团体在社区内相当代表。我们的优化方法使用公平的人口统计奇偶校验定义,但框架很容易扩展到其他公平的定义。我们建立了分别,连续和二进制数据的高斯图形模型和Ising模型的提出方法的统计一致性,证明了我们的方法可以以高概率恢复图形及其公平社区。
translated by 谷歌翻译
学习由有针对性的无环图(DAG)代表的基本休闲结构,这些事件来自完全观察到的事件是因果推理的关键部分,但由于组合和较大的搜索空间,这是一项挑战。最近的一系列发展通过利用代数平等表征,将该组合问题重新生要重现为一个连续的优化问题。但是,这些方法在优化之后遭受了固定阈值的措施,这不是一种灵活而系统的方法,可以排除诱导周期的边缘或错误的发现边缘,其边缘具有由数值精度引起的较小值。在本文中,我们开发了一种数据驱动的DAG结构学习方法,而没有预定义阈值,称为自适应宣传[30],该方法通过在正则化项中对每个参数应用自适应惩罚水平来实现。我们表明,在某些特定条件下,自适应宣传符合Oracle属性。此外,模拟实验结果验证了我们方法的有效性,而没有设置边缘重量的任何间隙。
translated by 谷歌翻译
多变量功能数据的协方差结构可以高度复杂,特别是如果多变量维度大,则使标准多变量数据的统计方法的扩展到功能数据设置具有挑战性。例如,通过将多变量方法应用于截断的基础扩展系数,最近已经扩展到高斯图形模型。然而,与多变量数据相比的关键难度是协方差操作员紧凑,因此不可逆转。本文中的方法论地解决了多元函数数据的协方差建模的一般问题,特别是特定功能性高斯图形模型。作为第一步,提出了多变量功能数据的协方差运算符的可分离性的新概念,称为部分可分离性,导致这种数据的新型Karhunen-Lo \“Eve型扩展。接下来,示出部分可分离结构是特别有用的,以提供可以用一系列有限维图形模型,每个相同的固定尺寸识别的明确定义的功能高斯图形模型。这通过应用联合图形套索来激发一个简单有效的估计过程。通过在电机任务期间的模拟和分析功能性脑连接的仿真和分析来评估图形模型估计方法的经验性能。通过在电机任务期间的仿真和分析来评估图形模型估计方法的百分比实证性能。
translated by 谷歌翻译
我们研究稀疏的线性回归在一个代理网络上,建模为无向图(没有集中式节点)。估计问题被制定为当地套索损失函数的最小化,加上共识约束的二次惩罚 - 后者是获取分布式解决方案方法的工具。虽然在优化文献中广泛研究了基于惩罚的共识方法,但其高维设置中的统计和计算保证仍不清楚。这项工作提供了对此公开问题的答案。我们的贡献是两倍。 First, we establish statistical consistency of the estimator: under a suitable choice of the penalty parameter, the optimal solution of the penalized problem achieves near optimal minimax rate $\mathcal{O}(s \log d/N)$ in $\ell_2 $ -loss,$ s $是稀疏性值,$ d $是环境维度,$ n $是网络中的总示例大小 - 这与集中式采样率相匹配。其次,我们表明,应用于惩罚问题的近端梯度算法,它自然导致分布式实现,线性地收敛到集中统计误差的顺序的公差 - 速率比例为$ \ mathcal {o}( d)$,揭示不可避免的速度准确性困境。数值结果证明了衍生的采样率和收敛速率缩放的紧张性。
translated by 谷歌翻译
Gaussian graphical models provide a powerful framework for uncovering conditional dependence relationships between sets of nodes; they have found applications in a wide variety of fields including sensor and communication networks, physics, finance, and computational biology. Often, one observes data on the nodes and the task is to learn the graph structure, or perform graphical model selection. While this is a well-studied problem with many popular techniques, there are typically three major practical challenges: i) many existing algorithms become computationally intractable in huge-data settings with tens of thousands of nodes; ii) the need for separate data-driven hyperparameter tuning considerably adds to the computational burden; iii) the statistical accuracy of selected edges often deteriorates as the dimension and/or the complexity of the underlying graph structures increase. We tackle these problems by developing the novel Minipatch Graph (MPGraph) estimator. Our approach breaks up the huge graph learning problem into many smaller problems by creating an ensemble of tiny random subsets of both the observations and the nodes, termed minipatches. We then leverage recent advances that use hard thresholding to solve the latent variable graphical model problem to consistently learn the graph on each minipatch. Our approach is computationally fast, embarrassingly parallelizable, memory efficient, and has integrated stability-based hyperparamter tuning. Additionally, we prove that under weaker assumptions than that of the Graphical Lasso, our MPGraph estimator achieves graph selection consistency. We compare our approach to state-of-the-art computational approaches for Gaussian graphical model selection including the BigQUIC algorithm, and empirically demonstrate that our approach is not only more statistically accurate but also extensively faster for huge graph learning problems.
translated by 谷歌翻译
We study a multi-factor block model for variable clustering and connect it to the regularized subspace clustering by formulating a distributionally robust version of the nodewise regression. To solve the latter problem, we derive a convex relaxation, provide guidance on selecting the size of the robust region, and hence the regularization weighting parameter, based on the data, and propose an ADMM algorithm for implementation. We validate our method in an extensive simulation study. Finally, we propose and apply a variant of our method to stock return data, obtain interpretable clusters that facilitate portfolio selection and compare its out-of-sample performance with other clustering methods in an empirical study.
translated by 谷歌翻译
我们考虑了从节点观测值估算多个网络拓扑的问题,其中假定这些网络是从相同(未知)随机图模型中绘制的。我们采用图形作为我们的随机图模型,这是一个非参数模型,可以从中绘制出潜在不同大小的图形。图形子的多功能性使我们能够解决关节推理问题,即使对于要恢复的图形包含不同数量的节点并且缺乏整个图形的精确比对的情况。我们的解决方案是基于将最大似然惩罚与Graphon估计方案结合在一起,可用于增强现有网络推理方法。通过引入嘈杂图抽样信息的强大方法,进一步增强了所提出的联合网络和图形估计。我们通过将其性能与合成和实际数据集中的竞争方法进行比较来验证我们提出的方法。
translated by 谷歌翻译
专家(MOE)的混合是一种流行的统计和机器学习模型,由于其灵活性和效率,多年来一直引起关注。在这项工作中,我们将高斯门控的局部MOE(GLOME)和块对基因协方差局部MOE(Blome)回归模型在异质数据中呈现非线性关系,并在高维预测变量之间具有潜在的隐藏图形结构相互作用。这些模型从计算和理论角度提出了困难的统计估计和模型选择问题。本文致力于研究以混合成分数量,高斯平均专家的复杂性以及协方差矩阵的隐藏块 - 基因结构为特征的Glome或Blome模型集合中的模型选择问题。惩罚最大似然估计框架。特别是,我们建立了以弱甲骨文不平等的形式的非反应风险界限,但前提是罚款的下限。然后,在合成和真实数据集上证明了我们的模型的良好经验行为。
translated by 谷歌翻译
作为估计高维网络的工具,图形模型通常应用于钙成像数据以估计功能性神经元连接,即神经元活动之间的关系。但是,在许多钙成像数据集中,没有同时记录整个神经元的人群,而是部分重叠的块。如(Vinci等人2019年)最初引入的,这导致了图形缝问题,在该问题中,目的是在仅观察到功能的子集时推断完整图的结构。在本文中,我们研究了一种新颖的两步方法来绘制缝的方法,该方法首先使用低级协方差完成技术在估计图结构之前使用低级协方差完成技术划分完整的协方差矩阵。我们介绍了三种解决此问题的方法:阻止奇异价值分解,核标准惩罚和非凸低级别分解。尽管先前的工作已经研究了低级别矩阵的完成,但我们解决了阻碍遗失的挑战,并且是第一个在图形学习背景下研究问题的挑战。我们讨论了两步过程的理论特性,通过证明新颖的l无限 - 基 - 误差界的矩阵完成,以块错失性证明了一种提出的方​​法的图选择一致性。然后,我们研究了所提出的方法在模拟和现实世界数据示例上的经验性能,通过该方法,我们显示了这些方法从钙成像数据中估算功能连通性的功效。
translated by 谷歌翻译
专家(MOE)模型的混合物是对数据中的异质性建模的流行框架,由于其灵活性以及可用的统计估计和模型选择工具的丰富性,用于统计和机器学习中的回归和分类问题。这种灵活性来自于允许MOE模型中的混合物重量(或门控函数)与专家(或组件密度)一起取决于解释变量。与经典的有限混合物和回归模型的有限混合物相比,这允许由更复杂的数据生成过程产生的数据建模,该过程的混合参数与协变量无关。从计算的角度来看,当解释变量的数量可能大于样本量时,MOE模型在高维度中的使用是挑战的,尤其是从理论的角度来看,文献是对于统计估计和特征选择问题,仍缺乏处理维度诅咒的结果。我们考虑具有软马克斯门控函数和高斯专家的有限MOE模型,用于在异质数据上进行高维回归,并通过Lasso进行$ L_1 $调查的估计。我们专注于拉索估计属性,而不是其特征选择属性。我们在LASSO函数的正规化参数上提供了一个下限,该参数确保了根据Kullback-Leibler损失,Lasso估算器满足了$ L_1 $ -ORACLE不平等。
translated by 谷歌翻译
我们介绍了缩写为Argen的任意矩形范围广义弹性净罚分法,用于在高维稀疏线性模型中执行约束变量选择和正则化。作为非负弹性净惩罚方法的自然延伸,证明了在某些条件下具有可变选择一致性和估计一致性。研究了Argen估计器分布的渐近行为。我们还提出了一种称为MU-QP-RR-W-$ L_1 $的算法,以有效解决ARGEN。通过进行仿真研究,我们表明Argen在许多设置中优于弹性网。最后,执行S&P 500 500指数跟踪对库存分配的限制的应用,以提供适应argen解决现实问题的一般指导。
translated by 谷歌翻译
高斯图形模型(GGM)广泛用于基因组学,生态学,心理测量学等各个领域的探索性数据分析。在高维度的情况下,当变量数量超过观测值数量的数量级时,GGM的估计是一个困难且不稳定的优化问题。变量或变量选择的聚类通常是在GGM估计之前进行的。我们提出了一种新方法,允许同时推断出分层聚类结构和描述层次结构每个级别独立性结构的图。该方法基于解决凸优化问题,该问题结合了图形套索惩罚与融合型套索惩罚。提出了有关真实和合成数据的结果。
translated by 谷歌翻译
提升是机器学习中最重要的发展之一。本文研究了在高维环境中量身定制的$ l_2 $增强的收敛速度。此外,我们介绍了所谓的\ textquotedblleft后升后\ textquotedblright。这是一个选择后的估计器,将普通最小二乘适用于在第一阶段选择的变量,以$ l_2 $增强。另一个变体是\ textquotedblleft正交增强\ texquotedblright \,在每个步骤之后,进行正交投影。我们表明,$ L_2 $的提升和正交增强都在稀疏,高维的环境中达到与Lasso相同的收敛速度。我们表明,经典$ L_2 $增强的收敛速率取决于稀疏特征值常数所描述的设计矩阵。为了显示后者的结果,我们基于分析$ L_2 $增强的重新审视行为,为纯贪婪算法得出了新的近似结果。我们还引入了可行的早期停止规则,可以轻松地实施和使用应用程序。我们的结果还允许在文献中缺少Lasso和Boosting之间进行直接比较。最后,我们介绍了模拟研究和应用,以说明我们的理论结果的相关性,并提供对增强的实际方面的见解。在这些模拟研究中,$ L_2 $提升明显优于套索。
translated by 谷歌翻译
我们提出了对学度校正随机块模型(DCSBM)的合适性测试。该测试基于调整后的卡方统计量,用于测量$ n $多项式分布的组之间的平等性,该分布具有$ d_1,\ dots,d_n $观测值。在网络模型的背景下,多项式的数量($ n $)的数量比观测值数量($ d_i $)快得多,与节点$ i $的度相对应,因此设置偏离了经典的渐近学。我们表明,只要$ \ {d_i \} $的谐波平均值生长到无穷大,就可以使统计量在NULL下分配。顺序应用时,该测试也可以用于确定社区数量。该测试在邻接矩阵的压缩版本上进行操作,因此在学位上有条件,因此对大型稀疏网络具有高度可扩展性。我们结合了一个新颖的想法,即在测试$ K $社区时根据$(k+1)$ - 社区分配来压缩行。这种方法在不牺牲计算效率的情况下增加了顺序应用中的力量,我们证明了它在恢复社区数量方面的一致性。由于测试统计量不依赖于特定的替代方案,因此其效用超出了顺序测试,可用于同时测试DCSBM家族以外的各种替代方案。特别是,我们证明该测试与具有社区结构的潜在可变性网络模型的一般家庭一致。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译