我们考虑学习底层多变量数据的稀疏无向图的问题。我们专注于稀疏精度矩阵上的图表拉普拉斯相关的约束,它在与图形节点相关联的随机变量之间编码条件依赖性。在这些约束下,精度矩阵的偏差元素是非正(总阳性),并且精度矩阵可能不是全级。我们调查了对广泛使用惩罚的日志似然方法来强制执行总积极性但不是拉普拉斯结构的修改。然后可以从非对角线精密矩阵中提取图拉普拉斯。乘法器(ADMM)算法的交替方向方法被提出和分析了Laplacian相关约束和套索的约束优化以及自适应套索处罚。基于合成数据的数值结果表明,所提出的约束的自适应套索方法显着优于现有的基于拉普拉斯的方法。我们还评估了我们对实际财务数据的方法。
translated by 谷歌翻译
我们考虑推断稀疏,高维固定多变量高斯时间序列的条件独立图(CIG)的问题。呈现了一种基于频域的基于洛索的跨组频域制定,基于频域足够的观察时间序列的统计。我们研究了乘法器(ADMM)方法的交替方向方法,以优化稀疏组套索惩罚的对数似然。我们为反向PSD估计的Frobenius规范的收敛条件提供了足够的条件,以在所有频率跨越所有频率的真实值,其中允许使用样本大小增加频率的数量。该结果还产生了收敛速度。我们还基于贝叶斯信息标准对调谐参数的选择进行了经验研究,并说明了利用合成和实际数据的数值示例的方法。
translated by 谷歌翻译
我们研究了估计多元高斯分布中的精度矩阵的问题,其中所有部分相关性都是非负面的,也称为多变量完全阳性的顺序阳性($ \ mathrm {mtp} _2 $)。近年来,这种模型得到了重大关注,主要是由于有趣的性质,例如,无论底层尺寸如何,最大似然估计值都存在于两个观察。我们将此问题作为加权$ \ ell_1 $ -norm正常化高斯的最大似然估计下$ \ mathrm {mtp} _2 $约束。在此方向上,我们提出了一种新颖的预计牛顿样算法,该算法包含精心设计的近似牛顿方向,这导致我们具有与一阶方法相同的计算和内存成本的算法。我们证明提出的预计牛顿样算法会聚到问题的最小值。从理论和实验中,我们进一步展示了我们使用加权$ \ ell_1 $ -norm的制剂的最小化器能够正确地恢复基础精密矩阵的支持,而无需在$ \ ell_1 $ -norm中存在不连贯状态方法。涉及合成和实世界数据的实验表明,我们所提出的算法从计算时间透视比最先进的方法显着更有效。最后,我们在金融时序数据中应用我们的方法,这些数据对于显示积极依赖性,在那里我们在学习金融网络上的模块间值方面观察到显着性能。
translated by 谷歌翻译
众所周知,许多网络系统,例如电网,大脑和舆论动态社交网络,都可以遵守保护法。这种现象的例子包括电网中的基尔乔夫法律和社交网络中的意见共识。网络系统中的保护定律可以建模为$ x = b^{*} y $的平衡方程,其中$ b^{*} $的稀疏模式捕获了网络的连接,$ y,x \在\ mathbb {r}^p $中分别是节点上“电势”和“注入流”的向量。节点电位$ y $会导致跨边缘的流量,并且在节点上注入的流量$ x $是网络动力学的无关紧要的。在几个实用的系统中,网络结构通常是未知的,需要从数据估算。为此,可以访问节点电位$ y $的样本,但只有节点注射$ x $的统计信息。在这个重要问题的激励下,我们研究了$ n $ y $ y $ y $ y $ y $ y $ y $ y $ b^{*} $稀疏结构的估计,假设节点注射$ x $遵循高斯分布,并带有已知的发行协方差$ \ sigma_x $。我们建议在高维度中为此问题的新$ \ ell_ {1} $ - 正则最大似然估计器,网络的大小$ p $大于样本量$ n $。我们表明,此优化问题是目标中的凸,并接受了独特的解决方案。在新的相互不一致的条件下,我们在三重$(n,p,d)$上建立了足够的条件,对于$ b^{*} $的精确稀疏恢复是可能的; $ d $是图的程度。我们还建立了在元素最大,Frobenius和运营商规范中回收$ b^{*} $的保证。最后,我们通过对拟议估计量对合成和现实世界数据的性能进行实验验证来补充这些理论结果。
translated by 谷歌翻译
学习由有针对性的无环图(DAG)代表的基本休闲结构,这些事件来自完全观察到的事件是因果推理的关键部分,但由于组合和较大的搜索空间,这是一项挑战。最近的一系列发展通过利用代数平等表征,将该组合问题重新生要重现为一个连续的优化问题。但是,这些方法在优化之后遭受了固定阈值的措施,这不是一种灵活而系统的方法,可以排除诱导周期的边缘或错误的发现边缘,其边缘具有由数值精度引起的较小值。在本文中,我们开发了一种数据驱动的DAG结构学习方法,而没有预定义阈值,称为自适应宣传[30],该方法通过在正则化项中对每个参数应用自适应惩罚水平来实现。我们表明,在某些特定条件下,自适应宣传符合Oracle属性。此外,模拟实验结果验证了我们方法的有效性,而没有设置边缘重量的任何间隙。
translated by 谷歌翻译
Gaussian graphical models provide a powerful framework for uncovering conditional dependence relationships between sets of nodes; they have found applications in a wide variety of fields including sensor and communication networks, physics, finance, and computational biology. Often, one observes data on the nodes and the task is to learn the graph structure, or perform graphical model selection. While this is a well-studied problem with many popular techniques, there are typically three major practical challenges: i) many existing algorithms become computationally intractable in huge-data settings with tens of thousands of nodes; ii) the need for separate data-driven hyperparameter tuning considerably adds to the computational burden; iii) the statistical accuracy of selected edges often deteriorates as the dimension and/or the complexity of the underlying graph structures increase. We tackle these problems by developing the novel Minipatch Graph (MPGraph) estimator. Our approach breaks up the huge graph learning problem into many smaller problems by creating an ensemble of tiny random subsets of both the observations and the nodes, termed minipatches. We then leverage recent advances that use hard thresholding to solve the latent variable graphical model problem to consistently learn the graph on each minipatch. Our approach is computationally fast, embarrassingly parallelizable, memory efficient, and has integrated stability-based hyperparamter tuning. Additionally, we prove that under weaker assumptions than that of the Graphical Lasso, our MPGraph estimator achieves graph selection consistency. We compare our approach to state-of-the-art computational approaches for Gaussian graphical model selection including the BigQUIC algorithm, and empirically demonstrate that our approach is not only more statistically accurate but also extensively faster for huge graph learning problems.
translated by 谷歌翻译
我们提出了一种凸锥程序,可推断随机点产品图(RDPG)的潜在概率矩阵。优化问题最大化Bernoulli最大似然函数,增加核规范正则化术语。双重问题具有特别良好的形式,与众所周知的SemideFinite程序放松MaxCut问题有关。使用原始双功率条件,我们绑定了原始和双解决方案的条目和等级。此外,我们在轻微的技术假设下绑定了最佳目标值并证明了略微修改模型的概率估计的渐近一致性。我们对合成RDPG的实验不仅恢复了自然集群,而且还揭示了原始数据的下面的低维几何形状。我们还证明该方法在空手道俱乐部图表和合成美国参议图中恢复潜在结构,并且可以扩展到最多几百个节点的图表。
translated by 谷歌翻译
当节点具有人口统计属性时,概率图形模型中社区结构的推理可能不会与公平约束一致。某些人口统计学可能在某些检测到的社区中过度代表,在其他人中欠代表。本文定义了一个新的$ \ ell_1 $ -regulared伪似然方法,用于公平图形模型选择。特别是,我们假设真正的基础图表​​中存在一些社区或聚类结构,我们寻求从数据中学习稀疏的无向图形及其社区,使得人口统计团体在社区内相当代表。我们的优化方法使用公平的人口统计奇偶校验定义,但框架很容易扩展到其他公平的定义。我们建立了分别,连续和二进制数据的高斯图形模型和Ising模型的提出方法的统计一致性,证明了我们的方法可以以高概率恢复图形及其公平社区。
translated by 谷歌翻译
本文考虑通过最小化Stein损失来估算高维拉普人约束精密矩阵的问题。我们获得了这种估计器存在的必要和充分条件,这归结为检查某些数据相关图是否已连接。我们还在对称沥青损失下的高维设置中证明了一致性。我们表明错误率不依赖于图形稀疏性,或其他类型的结构,并且Laplacian约束足以实现高维一致性。我们的证据利用图拉普拉斯人的性质,以及基于有效图电阻的提出估计的表征。我们通过数值实验验证了我们的理论索赔。
translated by 谷歌翻译
在本文中,我们研究了推断空间变化的高斯马尔可夫随机场(SV-GMRF)的问题,其中的目标是学习代表基因之间网络关系的稀疏,特定于上下文的GMRF网络。 SV-GMRF的一个重要应用是推断来自空间分辨转录组学数据集的基因调节网络。当前有关SV-GMRF推断的工作基于正则最大似然估计(MLE),并且由于其高度非线性的性质而受到压倒性的计算成本。为了减轻这一挑战,我们提出了一个简单有效的优化问题,代替了配备强大的统计和计算保证的MLE。我们提出的优化问题在实践中非常有效:我们可以在不到2分钟的时间内解决具有超过200万变量的SV-GMRF的实例。我们将开发的框架应用于研究胶质母细胞瘤中的基因调节网络如何在组织内部空间重新连接,并确定转录因子Hes4和核糖体蛋白的显着活性是表征肿瘤血管周期壁iche中基因表达网络的特征抗性干细胞。
translated by 谷歌翻译
作为估计高维网络的工具,图形模型通常应用于钙成像数据以估计功能性神经元连接,即神经元活动之间的关系。但是,在许多钙成像数据集中,没有同时记录整个神经元的人群,而是部分重叠的块。如(Vinci等人2019年)最初引入的,这导致了图形缝问题,在该问题中,目的是在仅观察到功能的子集时推断完整图的结构。在本文中,我们研究了一种新颖的两步方法来绘制缝的方法,该方法首先使用低级协方差完成技术在估计图结构之前使用低级协方差完成技术划分完整的协方差矩阵。我们介绍了三种解决此问题的方法:阻止奇异价值分解,核标准惩罚和非凸低级别分解。尽管先前的工作已经研究了低级别矩阵的完成,但我们解决了阻碍遗失的挑战,并且是第一个在图形学习背景下研究问题的挑战。我们讨论了两步过程的理论特性,通过证明新颖的l无限 - 基 - 误差界的矩阵完成,以块错失性证明了一种提出的方​​法的图选择一致性。然后,我们研究了所提出的方法在模拟和现实世界数据示例上的经验性能,通过该方法,我们显示了这些方法从钙成像数据中估算功能连通性的功效。
translated by 谷歌翻译
我们考虑使用共享结构估算两个功能无向图形模型之间的差异的问题。在许多应用中,数据自然被认为是随机函数的向量而不是标量的矢量。例如,脑电图(EEG)数据更适当地被视为时间函数。在这样的问题中,不仅可以每个样本测量的函数数量大,而且每个功能都是自身是无限尺寸对象,使估计模型参数具有挑战性。这进一步复杂于曲线通常仅在离散时间点观察到。我们首先定义一个功能差异图,捕获两个功能图形模型之间的差异,并在功能性差分图定义良好时正式表征。然后,我们提出了一种方法,软件,直接估计功能差异图,而不首先估计每个图形。这在各个图形是密集的情况下,这是特别有益的,但差分图是稀疏的。我们表明,融合始终估计功能差图,即使在全面观察和离散的功能路径的高维设置中也是如此。我们通过仿真研究说明了我们方法的有限样本性质。我们还提出了一种竞争方法,该方法是关节功能图形套索,它概括了关节图形套索到功能设置。最后,我们将我们的方法应用于EEG数据,以揭示一群含有酒精使用障碍和对照组的个体之间的功能性脑连接的差异。
translated by 谷歌翻译
我们考虑从有限的嘈杂图形信号观察中学习图表的问题,其目标是找到图形信号的平滑表示。这种问题是通过在大型数据集中推断的关系结构,并且近年来广泛研究了这种问题。大多数现有方法专注于学习观察信号平滑的图表。但是,学习的图表容易过度拟合,因为它不会考虑未观察到的信号。为了解决这个问题,我们提出了一种基于分布稳健优化方法的新型图形学习模型,该模型旨在识别不仅提供了对观察信号中的不确定性的平滑表示的图表。在统计方面,我们建立了我们提出的模型的样本绩效保障。在优化方面,我们表明,在曲线图信号分布的温和假设下,我们提出的模型承认了平滑的非凸优化配方。然后,我们开发了一个预测的渐变方法来解决这一制定并建立其收敛保证。我们的配方在图形学习环境中提供了一个新的正则化视角。此外,综合和实世界数据的广泛数值实验表明,根据各种度量的观察信号的不同群体的模型具有比较不同的群体的较强的性能。
translated by 谷歌翻译
在许多应用程序(例如运动锦标赛或推荐系统)中,我们可以使用该数据,包括一组$ n $项目(或玩家)之间的成对比较。目的是使用这些数据来推断每个项目和/或其排名的潜在强度。此问题的现有结果主要集中在由单个比较图$ g $组成的设置上。但是,存在成对比较数据随时间发展的场景(例如体育比赛)。这种动态设置的理论结果相对有限,是本文的重点。我们研究\ emph {翻译同步}问题的扩展,到动态设置。在此设置中,我们给出了一系列比较图$(g_t)_ {t \ in \ mathcal {t}} $,其中$ \ nathcal {t} \ subset [0,1] $是代表时间的网格域,对于每个项目$ i $和time $ t \ in \ mathcal {t} $,有一个关联的未知强度参数$ z^*_ {t,i} \ in \ mathbb {r} $。我们的目标是恢复,以$ t \在\ Mathcal {t} $中,强度向量$ z^*_ t =(z^*_ {t,1},\ cdots,z^*_ {t,n}) $从$ z^*_ {t,i} -z^*_ {t,j} $的噪声测量值中,其中$ \ {i,j \} $是$ g_t $中的边缘。假设$ z^*_ t $在$ t $中顺利地演变,我们提出了两个估计器 - 一个基于平滑度的最小二乘方法,另一个基于对合适平滑度操作员低频本质空间的投影。对于两个估计器,我们为$ \ ell_2 $估计错误提供有限的样本范围,假设$ g_t $已连接到\ mathcal {t} $中的所有$ t \网格尺寸$ | \ MATHCAL {T} | $。我们通过有关合成和真实数据的实验来补充理论发现。
translated by 谷歌翻译
多变量功能数据的协方差结构可以高度复杂,特别是如果多变量维度大,则使标准多变量数据的统计方法的扩展到功能数据设置具有挑战性。例如,通过将多变量方法应用于截断的基础扩展系数,最近已经扩展到高斯图形模型。然而,与多变量数据相比的关键难度是协方差操作员紧凑,因此不可逆转。本文中的方法论地解决了多元函数数据的协方差建模的一般问题,特别是特定功能性高斯图形模型。作为第一步,提出了多变量功能数据的协方差运算符的可分离性的新概念,称为部分可分离性,导致这种数据的新型Karhunen-Lo \“Eve型扩展。接下来,示出部分可分离结构是特别有用的,以提供可以用一系列有限维图形模型,每个相同的固定尺寸识别的明确定义的功能高斯图形模型。这通过应用联合图形套索来激发一个简单有效的估计过程。通过在电机任务期间的模拟和分析功能性脑连接的仿真和分析来评估图形模型估计方法的经验性能。通过在电机任务期间的仿真和分析来评估图形模型估计方法的百分比实证性能。
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
我们研究稀疏的线性回归在一个代理网络上,建模为无向图(没有集中式节点)。估计问题被制定为当地套索损失函数的最小化,加上共识约束的二次惩罚 - 后者是获取分布式解决方案方法的工具。虽然在优化文献中广泛研究了基于惩罚的共识方法,但其高维设置中的统计和计算保证仍不清楚。这项工作提供了对此公开问题的答案。我们的贡献是两倍。 First, we establish statistical consistency of the estimator: under a suitable choice of the penalty parameter, the optimal solution of the penalized problem achieves near optimal minimax rate $\mathcal{O}(s \log d/N)$ in $\ell_2 $ -loss,$ s $是稀疏性值,$ d $是环境维度,$ n $是网络中的总示例大小 - 这与集中式采样率相匹配。其次,我们表明,应用于惩罚问题的近端梯度算法,它自然导致分布式实现,线性地收敛到集中统计误差的顺序的公差 - 速率比例为$ \ mathcal {o}( d)$,揭示不可避免的速度准确性困境。数值结果证明了衍生的采样率和收敛速率缩放的紧张性。
translated by 谷歌翻译
We study a multi-factor block model for variable clustering and connect it to the regularized subspace clustering by formulating a distributionally robust version of the nodewise regression. To solve the latter problem, we derive a convex relaxation, provide guidance on selecting the size of the robust region, and hence the regularization weighting parameter, based on the data, and propose an ADMM algorithm for implementation. We validate our method in an extensive simulation study. Finally, we propose and apply a variant of our method to stock return data, obtain interpretable clusters that facilitate portfolio selection and compare its out-of-sample performance with other clustering methods in an empirical study.
translated by 谷歌翻译
在本文中,我们考虑了使用$ \ ell_1 $ regularized logistic回归的方法来估算与高维iSing模型相关的图形的元学习问题,用于每个节点的邻域选择。我们的目标是在学习新任务中使用从辅助任务中学到的信息来降低其足够的样本复杂性。为此,我们提出了一种新颖的生成模型以及不当的估计方法。在我们的设置中,所有任务均为\ emph {相似}在其\ emph {Random}模型参数和支持中。通过将所有样品从辅助任务汇总到\ emph {不正确}估计一个参数向量,我们可以恢复假定的尺寸很小的真实支持联合,具有很高的概率,具有足够的样品复杂性为$ \ omega(1) $每任务,对于$ k = \ omega(d^3 \ log P)$具有$ p $节点和最大邻域大小$ d $的ISING型号的任务。然后,在对新任务的支持仅限于估计的支持联盟的支持下,我们证明,可以通过降低$ \ omega(d^3 \ log d)$的足够样品复杂性来获得新任务的一致邻居选择。
translated by 谷歌翻译
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
translated by 谷歌翻译