We present a deep convolutional decoder architecture that can generate volumetric 3D outputs in a compute-and memory-efficient manner by using an octree representation. The network learns to predict both the structure of the octree, and the occupancy values of individual cells. This makes it a particularly valuable technique for generating 3D shapes. In contrast to standard decoders acting on regular voxel grids, the architecture does not have cubic complexity. This allows representing much higher resolution outputs with a limited memory budget. We demonstrate this in several application domains, including 3D convolutional autoencoders, generation of objects and whole scenes from high-level representations, and shape from a single image.
translated by 谷歌翻译
We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.
translated by 谷歌翻译
We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions -a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the construction is applicable to unstructured point clouds and other noisy real-world data. We show that tangent convolutions can be evaluated efficiently on large-scale point clouds with millions of points. Using tangent convolutions, we design a deep fully-convolutional network for semantic segmentation of 3D point clouds, and apply it to challenging real-world datasets of indoor and outdoor 3D environments. Experimental results show that the presented approach outperforms other recent deep network constructions in detailed analysis of large 3D scenes.
translated by 谷歌翻译
Our method completes a partial 3D scan using a 3D Encoder-Predictor network that leverages semantic features from a 3D classification network. The predictions are correlated with a shape database, which we use in a multi-resolution 3D shape synthesis step. We obtain completed high-resolution meshes that are inferred from partial, low-resolution input scans.
translated by 谷歌翻译
Implicit shape representations, such as Level Sets, provide a very elegant formulation for performing computations involving curves and surfaces. However, including implicit representations into canonical Neural Network formulations is far from straightforward. This has consequently restricted existing approaches to shape inference, to significantly less effective representations, perhaps most commonly voxels occupancy maps or sparse point clouds.To overcome this limitation we propose a novel formulation that permits the use of implicit representations of curves and surfaces, of arbitrary topology, as individual layers in Neural Network architectures with end-to-end trainability. Specifically, we propose to represent the output as an oriented level set of a continuous and discretised embedding function. We investigate the benefits of our approach on the task of 3D shape prediction from a single image and demonstrate its ability to produce a more accurate reconstruction compared to voxel-based representations. We further show that our model is flexible and can be applied to a variety of shape inference problems.
translated by 谷歌翻译
We present a network architecture for processing point clouds that directly operates on a collection of points represented as a sparse set of samples in a high-dimensional lattice. Naïvely applying convolutions on this lattice scales poorly, both in terms of memory and computational cost, as the size of the lattice increases. Instead, our network uses sparse bilateral convolutional layers as building blocks. These layers maintain efficiency by using indexing structures to apply convolutions only on occupied parts of the lattice, and allow flexible specifications of the lattice structure enabling hierarchical and spatially-aware feature learning, as well as joint 2D-3D reasoning. Both point-based and image-based representations can be easily incorporated in a network with such layers and the resulting model can be trained in an end-to-end manner. We present results on 3D segmentation tasks where our approach outperforms existing state-of-the-art techniques.
translated by 谷歌翻译
Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is naturally dense (e.g., photos), many other data sources are inherently sparse. Examples include 3D point clouds that were obtained using a LiDAR scanner or RGB-D camera. Standard "dense" implementations of convolutional networks are very inefficient when applied on such sparse data. We introduce new sparse convolutional operations that are designed to process spatially-sparse data more efficiently, and use them to develop spatially-sparse convolutional networks. We demonstrate the strong performance of the resulting models, called submanifold sparse convolutional networks (SSCNs), on two tasks involving semantic segmentation of 3D point clouds. In particular, our models outperform all prior state-of-the-art on the test set of a recent semantic segmentation competition.
translated by 谷歌翻译
Robust object recognition is a crucial skill for robots operating autonomously in real world environments. Range sensors such as LiDAR and RGBD cameras are increasingly found in modern robotic systems, providing a rich source of 3D information that can aid in this task. However, many current systems do not fully utilize this information and have trouble efficiently dealing with large amounts of point cloud data. In this paper, we propose VoxNet, an architecture to tackle this problem by integrating a volumetric Occupancy Grid representation with a supervised 3D Convolutional Neural Network (3D CNN). We evaluate our approach on publicly available benchmarks using LiDAR, RGBD, and CAD data. VoxNet achieves accuracy beyond the state of the art while labeling hundreds of instances per second.
translated by 谷歌翻译
We present a learnt system for multi-view stereopsis. In contrast to recent learning based methods for 3D reconstruction, we leverage the underlying 3D geometry of the problem through feature projection and unprojection along viewing rays. By formulating these operations in a differentiable manner, we are able to learn the system end-to-end for the task of metric 3D reconstruction. End-to-end learning allows us to jointly reason about shape priors while conforming to geometric constraints, enabling reconstruction from much fewer images (even a single image) than required by classical approaches as well as completion of unseen surfaces. We thoroughly evaluate our approach on the ShapeNet dataset and demonstrate the benefits over classical approaches and recent learning based methods.
translated by 谷歌翻译
Recently, implicit neural representations have gained popularity for learning-based 3D reconstruction. While demonstrating promising results, most implicit approaches are limited to comparably simple geometry of single objects and do not scale to more complicated or large-scale scenes. The key limiting factor of implicit methods is their simple fullyconnected network architecture which does not allow for integrating local information in the observations or incorporating inductive biases such as translational equivariance. In this paper, we propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes. By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space. We investigate the effectiveness of the proposed representation by reconstructing complex geometry from noisy point clouds and low-resolution voxel representations. We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
translated by 谷歌翻译
本文探讨了使用深神经网络从多个拼字图中重建的当前对象重建的最新。它提出了两种算法来从单个图像中提取多个视图。本文提出了一个基于像素对齐的隐式函数(PIFU)的系统,并制定了一个高级采样策略来生成签名的距离样品。它还将这种方法与从多个视图中的深度图回归进行了比较。此外,本文使用了一个新颖的数据集来进行赛车游戏Assetto Corsa的车辆重建,该数据集的质量比常用的Shapenet数据集更高。受过训练的神经网络很好地概括了现实世界的输入,并创建了合理且详细的重建。
translated by 谷歌翻译
我们为RGB视频提供了基于变压器的神经网络体系结构,用于多对象3D重建。它依赖于表示知识的两种替代方法:作为特征的全局3D网格和一系列特定的2D网格。我们通过专用双向注意机制在两者之间逐步交换信息。我们利用有关图像形成过程的知识,以显着稀疏注意力重量矩阵,从而使我们的体系结构在记忆和计算方面可行。我们在3D特征网格的顶部附上一个detr风格的头,以检测场景中的对象并预测其3D姿势和3D形状。与以前的方法相比,我们的体系结构是单阶段,端到端可训练,并且可以从整体上考虑来自多个视频帧的场景,而无需脆弱的跟踪步骤。我们在挑战性的SCAN2CAD数据集上评估了我们的方法,在该数据集中,我们的表现要优于RGB视频的3D对象姿势估算的最新最新方法; (2)将多视图立体声与RGB-D CAD对齐结合的强大替代方法。我们计划发布我们的源代码。
translated by 谷歌翻译
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learningbased 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.
translated by 谷歌翻译
3D shape models are becoming widely available and easier to capture, making available 3D information crucial for progress in object classification. Current state-of-theart methods rely on CNNs to address this problem. Recently, we witness two types of CNNs being developed: CNNs based upon volumetric representations versus CNNs based upon multi-view representations. Empirical results from these two types of CNNs exhibit a large gap, indicating that existing volumetric CNN architectures and approaches are unable to fully exploit the power of 3D representations. In this paper, we aim to improve both volumetric CNNs and multi-view CNNs according to extensive analysis of existing approaches. To this end, we introduce two distinct network architectures of volumetric CNNs. In addition, we examine multi-view CNNs, where we introduce multiresolution filtering in 3D. Overall, we are able to outperform current state-of-the-art methods for both volumetric CNNs and multi-view CNNs. We provide extensive experiments designed to evaluate underlying design choices, thus providing a better understanding of the space of methods available for object classification on 3D data.
translated by 谷歌翻译
自回归模型已被证明在NLP文本生成任务中非常强大,并且最近也获得了图像生成的普及。然而,到目前为止,它们已经有限地用于合成3D形状。这主要是由于在描述复杂形状时缺乏线性化3D数据的直接方法以及缩放所得序列的长度的问题。在这项工作中,我们解决了这两个问题。我们使用Octrees作为紧凑的层级表示,可以通过遍历排序顺序顺序。此外,我们引入了一种自适应压缩方案,显着降低了序列长度,从而使其具有变压器的有效发电,同时仍然允许完全自回归采样和并行训练。我们通过与现有形状的形式进行比较来展示我们模型的性能。
translated by 谷歌翻译
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1]. The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3], DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.
translated by 谷歌翻译
Compact and accurate representations of 3D shapes are central to many perception and robotics tasks. State-of-the-art learning-based methods can reconstruct single objects but scale poorly to large datasets. We present a novel recursive implicit representation to efficiently and accurately encode large datasets of complex 3D shapes by recursively traversing an implicit octree in latent space. Our implicit Recursive Octree Auto-Decoder (ROAD) learns a hierarchically structured latent space enabling state-of-the-art reconstruction results at a compression ratio above 99%. We also propose an efficient curriculum learning scheme that naturally exploits the coarse-to-fine properties of the underlying octree spatial representation. We explore the scaling law relating latent space dimension, dataset size, and reconstruction accuracy, showing that increasing the latent space dimension is enough to scale to large shape datasets. Finally, we show that our learned latent space encodes a coarse-to-fine hierarchical structure yielding reusable latents across different levels of details, and we provide qualitative evidence of generalization to novel shapes outside the training set.
translated by 谷歌翻译