With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learningbased 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.
translated by 谷歌翻译
In recent years, substantial progress has been achieved in learning-based reconstruction of 3D objects. At the same time, generative models were proposed that can generate highly realistic images. However, despite this success in these closely related tasks, texture reconstruction of 3D objects has received little attention from the research community and state-of-the-art methods are either limited to comparably low resolution or constrained experimental setups. A major reason for these limitations is that common representations of texture are inefficient or hard to interface for modern deep learning techniques. In this paper, we propose Texture Fields, a novel texture representation which is based on regressing a continuous 3D function parameterized with a neural network. Our approach circumvents limiting factors like shape discretization and parameterization, as the proposed texture representation is independent of the shape representation of the 3D object. We show that Texture Fields are able to represent high frequency texture and naturally blend with modern deep learning techniques. Experimentally, we find that Texture Fields compare favorably to state-of-the-art methods for conditional texture reconstruction of 3D objects and enable learning of probabilistic generative models for texturing unseen 3D models. We believe that Texture Fields will become an important building block for the next generation of generative 3D models.
translated by 谷歌翻译
Recently, implicit neural representations have gained popularity for learning-based 3D reconstruction. While demonstrating promising results, most implicit approaches are limited to comparably simple geometry of single objects and do not scale to more complicated or large-scale scenes. The key limiting factor of implicit methods is their simple fullyconnected network architecture which does not allow for integrating local information in the observations or incorporating inductive biases such as translational equivariance. In this paper, we propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes. By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space. We investigate the effectiveness of the proposed representation by reconstructing complex geometry from noisy point clouds and low-resolution voxel representations. We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
translated by 谷歌翻译
Deep learning based 3D reconstruction techniques have recently achieved impressive results. However, while stateof-the-art methods are able to output complex 3D geometry, it is not clear how to extend these results to time-varying topologies. Approaches treating each time step individually lack continuity and exhibit slow inference, while traditional 4D reconstruction methods often utilize a template model or discretize the 4D space at fixed resolution. In this work, we present Occupancy Flow, a novel spatio-temporal representation of time-varying 3D geometry with implicit correspondences. Towards this goal, we learn a temporally and spatially continuous vector field which assigns a motion vector to every point in space and time. In order to perform dense 4D reconstruction from images or sparse point clouds, we combine our method with a continuous 3D representation. Implicitly, our model yields correspondences over time, thus enabling fast inference while providing a sound physical description of the temporal dynamics. We show that our method can be used for interpolation and reconstruction tasks, and demonstrate the accuracy of the learned correspondences. We believe that Occupancy Flow is a promising new 4D representation which will be useful for a variety of spatio-temporal reconstruction tasks.
translated by 谷歌翻译
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to train reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel-and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our singleview reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.
translated by 谷歌翻译
This work introduces alternating latent topologies (ALTO) for high-fidelity reconstruction of implicit 3D surfaces from noisy point clouds. Previous work identifies that the spatial arrangement of latent encodings is important to recover detail. One school of thought is to encode a latent vector for each point (point latents). Another school of thought is to project point latents into a grid (grid latents) which could be a voxel grid or triplane grid. Each school of thought has tradeoffs. Grid latents are coarse and lose high-frequency detail. In contrast, point latents preserve detail. However, point latents are more difficult to decode into a surface, and quality and runtime suffer. In this paper, we propose ALTO to sequentially alternate between geometric representations, before converging to an easy-to-decode latent. We find that this preserves spatial expressiveness and makes decoding lightweight. We validate ALTO on implicit 3D recovery and observe not only a performance improvement over the state-of-the-art, but a runtime improvement of 3-10$\times$. Project website at https://visual.ee.ucla.edu/alto.htm/.
translated by 谷歌翻译
神经隐式功能的最新发展已在高质量的3D形状重建方面表现出巨大的成功。但是,大多数作品将空间分为形状的内部和外部,从而将其代表力量限制为单层和水密形状。这种局限性导致乏味的数据处理(将非紧密的原始数据转换为水密度),以及代表现实世界中一般对象形状的无能。在这项工作中,我们提出了一种新颖的方法来表示一般形状,包括具有多层表面的非水平形状和形状。我们介绍了3D形状(GIF)的一般隐式函数,该功能建模了每两个点之间的关系,而不是点和表面之间的关系。 GIF没有将3D空间分为预定义的内部区域,而是编码是否将两个点分开。 Shapenet上的实验表明,在重建质量,渲染效率和视觉保真度方面,GIF的表现优于先前的最先进方法。项目页面可从https://jianglongye.com/gifs获得。
translated by 谷歌翻译
最近对隐含形状表示的兴趣日益增长。与明确的陈述相反,他们没有解决局限性,他们很容易处理各种各样的表面拓扑。为了了解这些隐式表示,电流方法依赖于一定程度的形状监督(例如,内部/外部信息或距离形状知识),或者至少需要密集点云(以近似距离 - 到 - 到 - 形状)。相比之下,我们介绍{\方法},一种用于学习形状表示的自我监督方法,从可能极其稀疏的点云。就像在水牛的针问题一样,我们在点云上“掉落”(样本)针头,认为,静统计地靠近表面,针端点位于表面的相对侧。不需要形状知识,点云可以高稀疏,例如,作为车辆获取的Lidar点云。以前的自我监督形状表示方法未能在这种数据上产生良好的结果。我们获得定量结果与现有的形状重建数据集上现有的监督方法标准,并在Kitti等硬自动驾驶数据集中显示有前途的定性结果。
translated by 谷歌翻译
近年来,由于其表达力和灵活性,神经隐式表示在3D重建中获得了普及。然而,神经隐式表示的隐式性质导致缓慢的推理时间并且需要仔细初始化。在本文中,我们重新审视经典且无处不在的点云表示,并使用泊松表面重建(PSR)的可分辨率配方引入可分化的点对网格层,其允许给予定向的GPU加速的指示灯的快速解决方案点云。可微分的PSR层允许我们通过隐式指示器字段有效地和分散地桥接与3D网格的显式3D点表示,从而实现诸如倒角距离的表面重建度量的端到端优化。因此,点和网格之间的这种二元性允许我们以面向点云表示形状,这是显式,轻量级和富有表现力的。与神经内隐式表示相比,我们的形状 - 点(SAP)模型更具可解释,轻量级,并通过一个级别加速推理时间。与其他显式表示相比,如点,补丁和网格,SA​​P产生拓扑无关的水密歧管表面。我们展示了SAP对无知点云和基于学习的重建的表面重建任务的有效性。
translated by 谷歌翻译
Implicit shape representations, such as Level Sets, provide a very elegant formulation for performing computations involving curves and surfaces. However, including implicit representations into canonical Neural Network formulations is far from straightforward. This has consequently restricted existing approaches to shape inference, to significantly less effective representations, perhaps most commonly voxels occupancy maps or sparse point clouds.To overcome this limitation we propose a novel formulation that permits the use of implicit representations of curves and surfaces, of arbitrary topology, as individual layers in Neural Network architectures with end-to-end trainability. Specifically, we propose to represent the output as an oriented level set of a continuous and discretised embedding function. We investigate the benefits of our approach on the task of 3D shape prediction from a single image and demonstrate its ability to produce a more accurate reconstruction compared to voxel-based representations. We further show that our model is flexible and can be applied to a variety of shape inference problems.
translated by 谷歌翻译
我们介绍DMTET,深度3D条件生成模型,可以使用诸如粗体素的简单用户指南来合成高分辨率3D形状。它通过利用新型混合3D表示来结婚隐式和显式3D表示的优点。与当前隐含的方法相比,培训涉及符号距离值,DMTET直接针对重建的表面进行了优化,这使我们能够用更少的伪像来合成更精细的几何细节。与直接生成诸如网格之类的显式表示的深度3D生成模型不同,我们的模型可以合成具有任意拓扑的形状。 DMTET的核心包括可变形的四面体网格,其编码离散的符号距离函数和可分行的行进Tetrahedra层,其将隐式符号距离表示转换为显式谱图表示。这种组合允许使用在表面网格上明确定义的重建和对抗性损耗来联合优化表面几何形状和拓扑以及生成细分层次结构。我们的方法显着优于来自粗体素输入的条件形状合成的现有工作,培训在复杂的3D动物形状的数据集上。项目页面:https://nv-tlabs.github.io/dmtet/
translated by 谷歌翻译
在视觉计算中,3D几何形状以许多不同的形式表示,包括网格,点云,体素电网,水平集和深度图像。每个表示都适用于不同的任务,从而使一个表示形式转换为另一个表示(前向地图)是一个重要且常见的问题。我们提出了全向距离字段(ODF),这是一种新的3D形状表示形式,该表示通过将深度从任何观看方向从任何3D位置存储到对象的表面来编码几何形状。由于射线是ODF的基本单元,因此可以轻松地从通用的3D表示和点云等常见的3D表示。与限制代表封闭表面的水平集方法不同,ODF是未签名的,因此可以对开放表面进行建模(例如服装)。我们证明,尽管在遮挡边界处存在固有的不连续性,但可以通过神经网络(Neururodf)有效地学习ODF。我们还引入了有效的前向映射算法,以转换odf to&从常见的3D表示。具体而言,我们引入了一种有效的跳跃立方体算法,用于从ODF生成网格。实验表明,神经模型可以通过过度拟合单个对象学会学会捕获高质量的形状,并学会概括对共同的形状类别。
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译
从单视图重建3D形状是一个长期的研究问题。在本文中,我们展示了深度隐式地面网络,其可以通过预测底层符号距离场来从2D图像产生高质量的细节的3D网格。除了利用全局图像特征之外,禁止2D图像上的每个3D点的投影位置,并从图像特征映射中提取本地特征。结合全球和局部特征显着提高了符合距离场预测的准确性,特别是对于富含细节的区域。据我们所知,伪装是一种不断捕获从单视图图像中存在于3D形状中存在的孔和薄结构等细节的方法。 Disn在从合成和真实图像重建的各种形状类别上实现最先进的单视性重建性能。代码可在https://github.com/xharlie/disn提供补充可以在https://xharlie.github.io/images/neUrips_2019_Supp.pdf中找到补充
translated by 谷歌翻译
Intelligent mesh generation (IMG) refers to a technique to generate mesh by machine learning, which is a relatively new and promising research field. Within its short life span, IMG has greatly expanded the generalizability and practicality of mesh generation techniques and brought many breakthroughs and potential possibilities for mesh generation. However, there is a lack of surveys focusing on IMG methods covering recent works. In this paper, we are committed to a systematic and comprehensive survey describing the contemporary IMG landscape. Focusing on 110 preliminary IMG methods, we conducted an in-depth analysis and evaluation from multiple perspectives, including the core technique and application scope of the algorithm, agent learning goals, data types, targeting challenges, advantages and limitations. With the aim of literature collection and classification based on content extraction, we propose three different taxonomies from three views of key technique, output mesh unit element, and applicable input data types. Finally, we highlight some promising future research directions and challenges in IMG. To maximize the convenience of readers, a project page of IMG is provided at \url{https://github.com/xzb030/IMG_Survey}.
translated by 谷歌翻译
Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).
translated by 谷歌翻译
We propose an end-to-end deep learning architecture that produces a 3D shape in triangular mesh from a single color image. Limited by the nature of deep neural network, previous methods usually represent a 3D shape in volume or point cloud, and it is non-trivial to convert them to the more ready-to-use mesh model. Unlike the existing methods, our network represents 3D mesh in a graph-based convolutional neural network and produces correct geometry by progressively deforming an ellipsoid, leveraging perceptual features extracted from the input image. We adopt a coarse-to-fine strategy to make the whole deformation procedure stable, and define various of mesh related losses to capture properties of different levels to guarantee visually appealing and physically accurate 3D geometry. Extensive experiments show that our method not only qualitatively produces mesh model with better details, but also achieves higher 3D shape estimation accuracy compared to the state-of-the-art.
translated by 谷歌翻译
我们引入了统一的单一和多视图神经隐式3D重建框架VPFusion。 VPFusion使用-3D功能卷获得高质量的重建,以捕获3D结构感知的上下文和像素对齐的图像特征,以捕获精细的本地细节。现有方法使用RNN,功能池或注意力在每个视图中独立计算以进行多视图融合。 RNN遭受长期记忆丧失和置换差异的困扰,而特征池或独立计算的注意力会导致每种视图中的表示形式在最后的合并步骤之前都不知道其他视图。相比之下,我们通过建立基于变压器的成对视图关联来显示改进的多视图融合。特别是,我们提出了一种新颖的交错3D推理和成对视图的关联结构,以跨不同视图的特征体积融合。使用此结构感知和多视图感知功能量,与现有方法相比,我们显示出改进的3D重建性能。 VPFusion还通过合并与像素一致的本地图像功能来进一步提高重建质量,以捕获细节。我们验证了VPFusion在Shapenet和ModelNet数据集上的有效性,在该数据集中,我们在该数据集中胜过或执行最先进的单个和多视图3D形状重建方法。
translated by 谷歌翻译
Pixel-aligned Implicit function (PIFu): We present pixel-aligned implicit function (PIFu), which allows recovery of high-resolution 3D textured surfaces of clothed humans from a single input image (top row). Our approach can digitize intricate variations in clothing, such as wrinkled skirts and high-heels, including complex hairstyles. The shape and textures can be fully recovered including largely unseen regions such as the back of the subject. PIFu can also be naturally extended to multi-view input images (bottom row).
translated by 谷歌翻译