考虑到大量未标记的语音数据和高标签成本,无监督的学习方法对于更好的系统开发至关重要。最成功的方法之一是对比度的自我监督方法,这些方法需要负采样:采样替代样品与当前样品(锚)对比。但是,很难确保所有负样本属于与没有标签的锚类别不同的​​类别。本文在未标记的语音语料库上应用了一种非对抗性的自我监督学习方法来学习话语级的嵌入。我们使用没有标签的蒸馏(Dino),在计算机视觉中提出,并将其改编为语音域。与对比度方法不同,Dino不需要负采样。这些嵌入是根据说话者验证和情感识别评估的。在说话者验证中,无监督的恐龙与余弦评分嵌入了voxceleb1测试试验中的4.38%EER。这表现优于最佳的对比度自我监督方法,而EER中的相对相对40%。不需要扬声器标签的迭代伪标记训练管道将EER进一步提高到1.89%。在情感识别中,Iemocap,Crema-D和MSP播客的Micro-F1得分分别进行了60.87、79.21和56.98%的恐龙。结果暗示着恐龙嵌入到不同语音应用中的普遍性。
translated by 谷歌翻译
在最近的研究中,自我监管的预训练模型倾向于在转移学习中优于监督的预训练模型。特别是,可以在语音应用中使用语音级语音表示的自我监督学习(SSL),这些语音应用需要歧视性表示话语中一致属性的表示:说话者,语言,情感和年龄。现有的框架级别的自我监督语音表示,例如WAV2VEC,可以用作带有汇总的话语级表示,但这些模型通常很大。也有SSL技术可以学习话语级的表示。最成功的方法之一是一种对比方法,它需要负采样:选择替代样品与当前样品(锚)对比。但是,这并不确保所有负面样本属于与没有标签的锚类别不同的​​类别。本文应用了一种非对抗性的自我监督方法来学习话语级的嵌入。我们对没有标签(Dino)从计算机视觉到语音进行了调整,没有标签(Dino)。与对比方法不同,Dino不需要负抽样。我们将Dino与受到监督方式训练的X-Vector进行了比较。当转移到下游任务(说话者验证,语音情绪识别(SER)和阿尔茨海默氏病检测)时,Dino的表现优于X-Vector。我们研究了转移学习过程中几个方面的影响,例如将微调过程分为步骤,块长度或增强。在微调过程中,首先调整最后一个仿射层,然后整个网络一次超过微调。使用较短的块长度,尽管它们产生了更多不同的输入,但并不一定会提高性能,这意味着至少需要具有特定长度的语音段才能为每个应用程序提高性能。增强对SER有帮助。
translated by 谷歌翻译
在这份技术报告中,我们描述了Voxceleb演讲者识别挑战2022(VOXSRC-22)的Royalflush提交。我们的提交内容包含曲目1,该曲目1用于监督的说话者验证和曲目3,该曲目适用于半监督者验证。对于轨道1,我们开发了具有对称体系结构的功能强大的基于U-NET的扬声器嵌入提取器。拟议的系统在验证集上获得了EER的2.06%,在MindCF中获得了0.1293。与最先进的ECAPA-TDNN相比,它在EER中获得了20.7%的相对提高,而MindCF的相对提高了22.70%。对于轨道3,我们采用了源域监督和目标域自学的联合培训,以获取扬声器嵌入提取器。随后的聚类过程可以获得目标域伪扬声器标签。我们使用所有源和目标域数据以有监督的方式适应说话者嵌入提取器,从而可以充分利用这两个域信息。此外,可以重复聚类和监督域的适应性,直到验证集对性能收敛为止。我们的最终提交是融合了10种型号,并在验证集上实现了7.75%EER和0.3517 MindCF。
translated by 谷歌翻译
在本文中,我们提出了自我监督的发言者表示学习策略,该策略包括在前端的引导平衡扬声器表示学习和在后端的不确定性意识的概率扬声器嵌入训练。在前端阶段,我们通过具有均匀性正则化术语的引导训练方案来学习扬声器表示。在后端阶段,通过最大化属于同一扬声器的语音样本之间的相互似然分数来估计概率扬声器嵌入,这不仅提供扬声器表示,而且提供数据不确定性。实验结果表明,拟议的举止均衡训练策略可以有效地帮助了解扬声器表示,并以基于对比学习的传统方法优越。此外,我们展示了集成的两级框架在eer和mindcf方面进一步改善了VoxceleB1测试中的扬声器验证性能。
translated by 谷歌翻译
最先进的说话者验证系统本质上取决于某种人类监督,因为它们接受了大量标记数据的培训。但是,手动注释的话语缓慢,昂贵,无法扩展到当今可用的数据量。在这项研究中,我们通过直接从原始音频中学习表征来探索说话者验证的自我监督学习。目的是生成具有较小的言论扬声器和较大言论扬声器差异的稳健扬声器嵌入。我们的方法基于最新信息最大化学习框架和密集的数据增强预处理步骤。我们在表明它们与对比度损失相结合之前表明它们实现更好的性能之前,评估了这些方法在没有对比样本的情况下工作的能力。此外,我们进行实验表明,与现有技术相比,我们的方法达到了竞争成果,并且在用一小部分标记数据进行微调时,与监督基线相比,可以获得更好的性能。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
没有发言者标签的培训扬声器 - 识别和强大的发言者验证系统仍然挑战和值得探索。在这项研究中,我们提出了一种有效的自我监督的学习框架和一种新的正规化策略,以促进自我监督的发言者代表学习。不同于基于对比的自我监督的学习方法,所提出的自我监督正则化(SSREG)专注于正数据对潜在的潜在表示之间的相似性。我们还探讨了替代在线数据增强策略对时域和频域的有效性。凭借我们强大的在线数据增强策略,所提出的SSREG显示了自我监督学习的潜力,而不使用负对对,它可以显着提高自我监督扬声器表示学习与简单的暹罗网络架构的表现。 VOXECEB数据集的综合实验表明,我们提出的自我监督方法通过增加有效的自我监督正则化和胜过其他以前的作品来获得23.4%的相对改善。
translated by 谷歌翻译
在本文中,我们描述了RTZR团队Voxceleb扬声器识别挑战2022(VOXSRC-22)的最高得分提交,在封闭的数据集中,扬声器验证轨道1.最高执行的系统是7型型号的融合,其中包含3种不同类型的类型模型体系结构。我们专注于培训模型以学习周期性信息。因此,所有型号均以4-6秒的镜头训练,每次发言。此外,我们采用了较大的保证金微调策略,该策略在我们的某些融合模型的先前挑战上表现出良好的表现。在评估过程中,我们应用了具有自适应对称归一化(AS-NORM)和矩阵得分平均值(MSA)的评分方法。最后,我们将模型与逻辑回归混合在一起,以融合所有受过训练的模型。最终提交在VOXSRC22测试集上实现了0.165 DCF和2.912%EER。
translated by 谷歌翻译
本文介绍了Speakin团队提交的SPEAKER验证(SV)系统,该系统针对2022年远场演讲者验证挑战(FFSVC2022)的任务2和任务2。挑战的SV任务集中在完全监督的远场演讲者验证(任务1)和半监督远场扬声器验证(任务2)的问题上。在任务1中,我们将Voxceleb和FFSVC2020数据集用作火车数据集。对于任务2,我们仅将Voxceleb数据集用作火车集。为此挑战开发了基于重新连接和基于REPVGG的架构。全局统计池结构和MQMHA池结构用于跨时间汇总框架级特征,以获得语音级别的表示。我们采用了Am-Softmax和Aam-Softmax来对产生的嵌入进行分类。我们创新提出了一种分阶段的转移学习方法。在训练阶段,我们保留扬声器的权重,并且在此阶段没有积极的样本来训练它们。然后,我们在第二阶段用正面和负样品微调这些权重。与传统的转移学习策略相比,该策略可以更好地改善模型性能。亚均值和标志的后端方法用于解决域不匹配的问题。在融合阶段,任务1中融合了三个模型,并在任务2中融合了两个模型。在FFSVC2022排行榜上,我们提交的EER为3.0049%,在Task1中,相应的MindCF为0.2938。在任务2中,EER和MindCF分别为6.2060%和0.5232。我们的方法可以提高表现出色,并在两项挑战任务中排名第一。
translated by 谷歌翻译
受到计算机视觉的自我监督学习的最新进展的启发,在本文中,我们介绍了Delores,这是一种新的通用音频表示方法。我们的主要目标是使我们的网络学习在资源受限的设置(数据和计算)中,可以很好地跨越各种下游任务。受Barlow Twins目标功能的启发,我们建议学习对输入音频样本失真不变的嵌入,同时确保它们包含有关样本的非冗余信息。为此,我们测量了两个相同的网络的输出之间的互相关矩阵,该网络用从音频文件采样的音频段的变形版本中,使其尽可能接近身份矩阵。我们将大规模音频集数据集和FSD50K的一小部分组合用于自学学习,并且与最先进的算法相比,参数的一半不到一半。为了进行评估,我们将这些学习的表示形式转移到9个下游分类任务,包括语音,音乐和动物声音,并在不同的评估设置下显示竞争结果。除了简单明了,我们的预训练算法还可以通过其固有的构造本质来计算,并且不需要仔细的实施细节以避免琐碎或退化的解决方案。此外,我们对结果进行消融研究,并使我们的所有代码和预培训模型公开可用https://github.com/speech-lab-iitm/delores。
translated by 谷歌翻译
在过去的十年中,通过深度学习方法取得了杰出的结果,对单一语言的语音情感识别(SER)取得了显着的结果。但是,由于(i)源和目标域分布之间的巨大差异,(ii)少数标记和许多未标记的新语言的话语,跨语言SER仍然是现实世界中的挑战。考虑到以前的方面,我们提出了一种半监督学习方法(SSL)方法,用于跨语性情感识别时,当有一些新语言的标签可用时。基于卷积神经网络(CNN),我们的方法通过利用伪标记的策略来适应新语言。特别是,研究了使用硬和软伪标签方法的使用。我们在源和新语言上均独立于语言的设置中彻底评估了该方法的性能,并在属于不同语言菌株的五种语言中显示出其稳健性。
translated by 谷歌翻译
当前的领先错误发音检测和诊断(MDD)系统通过端到端音素识别实现有希望的性能。这种端到端解决方案的一个挑战是在自然L2语音上缺乏人类注销的音素。在这项工作中,我们通过伪标记(PL)程序利用未标记的L2语音,并扩展基于预先训练的自我监督学习(SSL)模型的微调方法。具体而言,我们使用WAV2VEC 2.0作为我们的SSL模型,并使用原始标记的L2语音样本以及创建的伪标记的L2语音样本进行微调。我们的伪标签是动态的,是由在线模型的合奏生成的,这确保了我们的模型对伪标签的噪声具有强大的功能。我们表明,使用伪标签进行微调可实现5.35%的音素错误率降低和2.48%的MDD F1得分在仅标签样本的基线基线。提出的PL方法还显示出优于常规的离线PL方法。与最先进的MDD系统相比,我们的MDD解决方案会产生更准确,一致的语音误差诊断。此外,我们对单独的UTD-4ACCENTS数据集进行了开放测试,在该数据集中,我们的系统识别输出基于重音和清晰度,与人类感知有着密切的相关性。
translated by 谷歌翻译
语音中的自我监督学习涉及在大规模的未注释的语音语料库上训练语音表示网络,然后将学习的表示形式应用于下游任务。由于语音中SSL学习的大多数下游任务主要集中在语音中的内容信息上,因此最理想的语音表示形式应该能够将不需要的变化(例如说话者的变化)从内容中删除。但是,解开扬声器非常具有挑战性,因为删除说话者的信息也很容易导致内容丢失,而后者的损害通常远远超过了前者的好处。在本文中,我们提出了一种新的SSL方法,该方法可以实现扬声器分解而不会严重丢失内容。我们的方法是根据休伯特框架改编的,并结合了解开机制,以使教师标签和博学的代表规范化。我们在一组与内容相关的下游任务上评估了说话者分解的好处,并观察到我们的扬声器示词表示的一致且著名的性能优势。
translated by 谷歌翻译
最近,盲目的语音分离(BSS)和目标语音提取(TSE)的表现已取得了长足的进步。但是,大多数作品都专注于相对控制的条件,例如阅读语音。在更现实的情况下,性能可能会降低。引起这种降解的因素之一可能是固有的说话者变异性,例如情绪,通常在现实的语音中发生。在本文中,我们研究了情绪对TSE和BSS的影响。我们创建了一个新的测试数据集,以评估TSE和BSS。该数据集结合了Librispeech和Ryerson Audio-Visual Visual Espections and Song(Ravdess)。通过受控的实验,我们可以分析不同情绪对BSS和TSE性能的影响。我们观察到BSS对情绪相对强大,而TSE需要识别和提取目标说话者的语音,对情绪更为敏感。在比较演讲者验证实验中,我们表明,在处理情感语音时,确定目标扬声器可能特别具有挑战性。使用我们的发现,我们概述了可能改善BSS和TSE系统对情感语音的鲁棒性的潜在方向。
translated by 谷歌翻译
最近,蒙面的预测预训练在自我监督的学习(SSL)方面取得了显着的进展,以进行语音识别。它通常需要以无监督的方式获得的代码簿,从而使其准确和难以解释。我们提出了两种监督指导的代码书生成方法,以提高自动语音识别(ASR)的性能以及预训练效率,要么通过使用混合ASR系统来解码以生成音素级别对准(命名为PBERT),要么通过在上进行集群进行聚类。从端到端CTC模型(命名CTC聚类)提取的监督语音功能。混合动力和CTC模型均经过与微调相同的少量标记语音训练。实验表明,我们的方法对各种SSL和自我训练基准的优势具有显着优势,相对减少了17.0%。我们的预训练模型在非ASR语音任务中还显示出良好的可传递性。
translated by 谷歌翻译
最近,在持续演讲中调整自我监督学习(SSL)的想法已开始受到关注。在大量未标记的音频上预先培训的SSL模型可以生成有利于各种语音处理任务的通用表现形式。尽管他们无处不在的部署,但这些模型的潜在隐私风险并没有得到很好的调查。在本文中,我们在黑盒访问下使用会员资格推论攻击(MIA)提供了几个SSL语音模型的第一个隐私分析。实验结果表明,这些预训练的模型容易受到米娅的攻击,并且在话语级别和扬声器级别的高对抗性优势分数具有高的对抗性优势。此外,我们还开展了几项消融研究,以了解有助于米亚成功的因素。
translated by 谷歌翻译
Automatic emotion recognition in conversation (ERC) is crucial for emotion-aware conversational artificial intelligence. This paper proposes a distribution-based framework that formulates ERC as a sequence-to-sequence problem for emotion distribution estimation. The inherent ambiguity of emotions and the subjectivity of human perception lead to disagreements in emotion labels, which is handled naturally in our framework from the perspective of uncertainty estimation in emotion distributions. A Bayesian training loss is introduced to improve the uncertainty estimation by conditioning each emotional state on an utterance-specific Dirichlet prior distribution. Experimental results on the IEMOCAP dataset show that ERC outperformed the single-utterance-based system, and the proposed distribution-based ERC methods have not only better classification accuracy, but also show improved uncertainty estimation.
translated by 谷歌翻译
无监督的零射声语音转换(VC)旨在修改话语的扬声器特性,以匹配看不见的目标扬声器,而无需依赖并行培训数据。最近,已经显示了语音表示的自我监督学习在不使用转录物的情况下产生有用的语言单元,这可以直接传递给VC模型。在本文中,我们展示了通过使用长度重采样解码器来实现高质量的音频样本,这使得VC模型能够与不同的语言特征提取器和声码器一起工作,而无需它们以相同的序列长度运行。我们表明,我们的方法可以胜过VCTK数据集的许多基线。在不修改架构的情况下,我们进一步展示了a)使用来自同一扬声器的不同音频段,b)添加循环一致性损失,并且c)添加扬声器分类损失可以有助于学习更好的扬声器嵌入。我们的模型使用这些技术训练了Libritts,实现了最佳性能,产生了音频样本对目标扬声器的声音,同时保留了在字符错误率方面与实际人类话语相当的语言内容。
translated by 谷歌翻译
我们提出了Parse,这是一种新颖的半监督结构,用于学习强大的脑电图表现以进行情感识别。为了减少大量未标记数据与标记数据有限的潜在分布不匹配,Parse使用成对表示对准。首先,我们的模型执行数据增强,然后标签猜测大量原始和增强的未标记数据。然后将其锐化的标签和标记数据的凸组合锐化。最后,进行表示对准和情感分类。为了严格测试我们的模型,我们将解析与我们实施并适应脑电图学习的几种最先进的半监督方法进行了比较。我们对四个基于公共EEG的情绪识别数据集,种子,种子IV,种子V和Amigos(价和唤醒)进行这些实验。该实验表明,我们提出的框架在种子,种子-IV和Amigos(Valence)中的标记样品有限的情况下,取得了总体最佳效果,同时接近种子V和Amigos中的总体最佳结果(达到第二好) (唤醒)。分析表明,我们的成对表示对齐方式通过减少未标记数据和标记数据之间的分布比对来大大提高性能,尤其是当每类仅1个样本被标记时。
translated by 谷歌翻译
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-ofthe-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. 1
translated by 谷歌翻译