最近,在持续演讲中调整自我监督学习(SSL)的想法已开始受到关注。在大量未标记的音频上预先培训的SSL模型可以生成有利于各种语音处理任务的通用表现形式。尽管他们无处不在的部署,但这些模型的潜在隐私风险并没有得到很好的调查。在本文中,我们在黑盒访问下使用会员资格推论攻击(MIA)提供了几个SSL语音模型的第一个隐私分析。实验结果表明,这些预训练的模型容易受到米娅的攻击,并且在话语级别和扬声器级别的高对抗性优势分数具有高的对抗性优势。此外,我们还开展了几项消融研究,以了解有助于米亚成功的因素。
translated by 谷歌翻译
半监督学习(SSL)利用标记和未标记的数据来训练机器学习(ML)模型。最先进的SSL方法可以通过利用更少的标记数据来实现与监督学习相当的性能。但是,大多数现有作品都集中在提高SSL的性能。在这项工作中,我们通过研究SSL的培训数据隐私来采取不同的角度。具体而言,我们建议针对由SSL训练的ML模型进行的第一个基于数据增强的成员推理攻击。给定数据样本和黑框访问模型,成员推理攻击的目标是确定数据样本是否属于模型的训练数据集。我们的评估表明,拟议的攻击可以始终超过现有的成员推理攻击,并针对由SSL训练的模型实现最佳性能。此外,我们发现,SSL中会员泄漏的原因与受到监督学习中普遍认为的原因不同,即过度拟合(培训和测试准确性之间的差距)。我们观察到,SSL模型已被概括为测试数据(几乎为0个过度拟合),但“记住”训练数据通过提供更自信的预测,无论其正确性如何。我们还探索了早期停止,作为防止成员推理攻击SSL的对策。结果表明,早期停止可以减轻会员推理攻击,但由于模型的实用性降解成本。
translated by 谷歌翻译
一个名为语音处理通用性能基准(Superb)的排行榜,它旨在基准测试各种下游语音任务的共享自我监督学习(SSL)语音模型的性能,并推动了研究用于语音表示学习。 SuperB演示语音SSL上游模型通过仅限最小的调整来提高各种下游任务的性能。由于自我监督学习上游模型的范式,其次是下游任务,在语音界引起更多关注,表征此类范例的对抗性稳健性是高优先级的。在本文中,我们首次尝试在零知识对手和有限知识对手的袭击下调查此类范例的对抗脆弱性。实验结果表明,Superb提出的范例严重易受有限的知识对手的影响,零知识对手产生的攻击是可转移性的。 XAB测试验证了制作的对抗性攻击的难以察觉。
translated by 谷歌翻译
员额推理攻击允许对训练的机器学习模型进行对手以预测模型的训练数据集中包含特定示例。目前使用平均案例的“精度”度量来评估这些攻击,该攻击未能表征攻击是否可以自信地识别培训集的任何成员。我们认为,应该通过计算其低(例如<0.1%)假阳性率来计算攻击来评估攻击,并在以这种方式评估时发现大多数事先攻击差。为了解决这一问题,我们开发了一个仔细结合文献中多种想法的似然比攻击(Lira)。我们的攻击是低于虚假阳性率的10倍,并且在攻击现有度量的情况下也严格占主导地位。
translated by 谷歌翻译
Speech-centric machine learning systems have revolutionized many leading domains ranging from transportation and healthcare to education and defense, profoundly changing how people live, work, and interact with each other. However, recent studies have demonstrated that many speech-centric ML systems may need to be considered more trustworthy for broader deployment. Specifically, concerns over privacy breaches, discriminating performance, and vulnerability to adversarial attacks have all been discovered in ML research fields. In order to address the above challenges and risks, a significant number of efforts have been made to ensure these ML systems are trustworthy, especially private, safe, and fair. In this paper, we conduct the first comprehensive survey on speech-centric trustworthy ML topics related to privacy, safety, and fairness. In addition to serving as a summary report for the research community, we point out several promising future research directions to inspire the researchers who wish to explore further in this area.
translated by 谷歌翻译
在最近的研究中,自我监管的预训练模型倾向于在转移学习中优于监督的预训练模型。特别是,可以在语音应用中使用语音级语音表示的自我监督学习(SSL),这些语音应用需要歧视性表示话语中一致属性的表示:说话者,语言,情感和年龄。现有的框架级别的自我监督语音表示,例如WAV2VEC,可以用作带有汇总的话语级表示,但这些模型通常很大。也有SSL技术可以学习话语级的表示。最成功的方法之一是一种对比方法,它需要负采样:选择替代样品与当前样品(锚)对比。但是,这并不确保所有负面样本属于与没有标签的锚类别不同的​​类别。本文应用了一种非对抗性的自我监督方法来学习话语级的嵌入。我们对没有标签(Dino)从计算机视觉到语音进行了调整,没有标签(Dino)。与对比方法不同,Dino不需要负抽样。我们将Dino与受到监督方式训练的X-Vector进行了比较。当转移到下游任务(说话者验证,语音情绪识别(SER)和阿尔茨海默氏病检测)时,Dino的表现优于X-Vector。我们研究了转移学习过程中几个方面的影响,例如将微调过程分为步骤,块长度或增强。在微调过程中,首先调整最后一个仿射层,然后整个网络一次超过微调。使用较短的块长度,尽管它们产生了更多不同的输入,但并不一定会提高性能,这意味着至少需要具有特定长度的语音段才能为每个应用程序提高性能。增强对SER有帮助。
translated by 谷歌翻译
机器学习模型容易记住敏感数据,使它们容易受到会员推理攻击的攻击,其中对手的目的是推断是否使用输入样本来训练模型。在过去的几年中,研究人员产生了许多会员推理攻击和防御。但是,这些攻击和防御采用各种策略,并在不同的模型和数据集中进行。但是,缺乏全面的基准意味着我们不了解现有攻击和防御的优势和劣势。我们通过对不同的会员推理攻击和防御措施进行大规模测量来填补这一空白。我们通过研究九项攻击和六项防御措施来系统化成员的推断,并在整体评估中衡量不同攻击和防御的性能。然后,我们量化威胁模型对这些攻击结果的影响。我们发现,威胁模型的某些假设,例如相同架构和阴影和目标模型之间的相同分布是不必要的。我们也是第一个对从Internet收集的现实世界数据而不是实验室数据集进行攻击的人。我们进一步研究是什么决定了会员推理攻击的表现,并揭示了通常认为过度拟合水平不足以成功攻击。取而代之的是,成员和非成员样本之间的熵/横向熵的詹森 - 香农距离与攻击性能的相关性更好。这为我们提供了一种新的方法,可以在不进行攻击的情况下准确预测会员推理风险。最后,我们发现数据增强在更大程度上降低了现有攻击的性能,我们提出了使用增强作用的自适应攻击来训练阴影和攻击模型,以改善攻击性能。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
随着机器学习技术的发展,研究的注意力已从单模式学习转变为多模式学习,因为现实世界中的数据以不同的方式存在。但是,多模式模型通常比单模式模型具有更多的信息,并且通常将其应用于敏感情况,例如医疗报告生成或疾病鉴定。与针对机器学习分类器的现有会员推断相比,我们关注的是多模式模型的输入和输出的问题,例如不同的模式,例如图像字幕。这项工作通过成员推理攻击的角度研究了多模式模型的隐私泄漏,这是确定数据记录是否涉及模型培训过程的过程。为了实现这一目标,我们提出了多种模型的成员资格推理(M^4i),分别使用两种攻击方法来推断成员身份状态,分别为基于公表示的(MB)M^4i和基于特征(FB)M^4i。更具体地说,MB M^4i在攻击时采用相似性指标来推断目标数据成员资格。 FB M^4i使用预先训练的阴影多模式提取器来通过比较提取的输入和输出功能的相似性来实现数据推理攻击的目的。广泛的实验结果表明,两种攻击方法都可以实现强大的性能。在不受限制的情况下,平均可以获得攻击成功率的72.5%和94.83%。此外,我们评估了针对我们的攻击的多种防御机制。 M^4i攻击的源代码可在https://github.com/multimodalmi/multimodal-membership-inference.git上公开获得。
translated by 谷歌翻译
考虑到大量未标记的语音数据和高标签成本,无监督的学习方法对于更好的系统开发至关重要。最成功的方法之一是对比度的自我监督方法,这些方法需要负采样:采样替代样品与当前样品(锚)对比。但是,很难确保所有负样本属于与没有标签的锚类别不同的​​类别。本文在未标记的语音语料库上应用了一种非对抗性的自我监督学习方法来学习话语级的嵌入。我们使用没有标签的蒸馏(Dino),在计算机视觉中提出,并将其改编为语音域。与对比度方法不同,Dino不需要负采样。这些嵌入是根据说话者验证和情感识别评估的。在说话者验证中,无监督的恐龙与余弦评分嵌入了voxceleb1测试试验中的4.38%EER。这表现优于最佳的对比度自我监督方法,而EER中的相对相对40%。不需要扬声器标签的迭代伪标记训练管道将EER进一步提高到1.89%。在情感识别中,Iemocap,Crema-D和MSP播客的Micro-F1得分分别进行了60.87、79.21和56.98%的恐龙。结果暗示着恐龙嵌入到不同语音应用中的普遍性。
translated by 谷歌翻译
语音情感识别(SER)处理语音信号以检测和表征表达的感知情绪。许多SER应用系统经常获取和传输在客户端收集的语音数据,以远程云平台进行推理和决策。然而,语音数据不仅涉及在声乐表达中传达的情绪,而且还具有其他敏感的人口特征,例如性别,年龄和语言背景。因此,塞尔系统希望能够在防止敏感和人口统计信息的意外/不正当推论的同时对情感构建进行分类的能力。联合学习(FL)是一个分布式机器学习范例,其协调客户端,以便在不共享其本地数据的情况下协同培训模型。此培训方法似乎是安全的,可以提高SER的隐私。然而,最近的作品表明,流动方法仍然容易受到重建攻击和会员推论攻击等各种隐私攻击的影响。虽然这些大部分都集中在计算机视觉应用程序上,但是使用FL技术训练的SER系统中存在这种信息泄漏。为了评估使用FL培训的SER系统的信息泄漏,我们提出了一个属性推理攻击框架,其分别涉及来自共享梯度或模型参数的客户端的敏感属性信息,分别对应于FEDSGD和FADAVG训练算法。作为一种用例,我们使用三个SER基准数据集来统一地评估我们预测客户的性别信息的方法:IEMocap,Crema-D和MSP-EXPLA。我们表明,使用FL培训的SER系统可实现属性推理攻击。我们进一步确定大多数信息泄漏可能来自SER模型中的第一层。
translated by 谷歌翻译
语音中的自我监督学习涉及在大规模的未注释的语音语料库上训练语音表示网络,然后将学习的表示形式应用于下游任务。由于语音中SSL学习的大多数下游任务主要集中在语音中的内容信息上,因此最理想的语音表示形式应该能够将不需要的变化(例如说话者的变化)从内容中删除。但是,解开扬声器非常具有挑战性,因为删除说话者的信息也很容易导致内容丢失,而后者的损害通常远远超过了前者的好处。在本文中,我们提出了一种新的SSL方法,该方法可以实现扬声器分解而不会严重丢失内容。我们的方法是根据休伯特框架改编的,并结合了解开机制,以使教师标签和博学的代表规范化。我们在一组与内容相关的下游任务上评估了说话者分解的好处,并观察到我们的扬声器示词表示的一致且著名的性能优势。
translated by 谷歌翻译
在其培训集中,给定训练有素的模型泄漏了多少培训模型泄露?会员资格推理攻击用作审计工具,以量化模型在其训练集中泄漏的私人信息。会员推理攻击受到不同不确定性的影响,即攻击者必须解决培训数据,培训算法和底层数据分布。因此,攻击成功率,在文献中的许多攻击,不要精确地捕获模型的信息泄漏关于他们的数据,因为它们还反映了攻击算法具有的其他不确定性。在本文中,我们解释了隐含的假设以及使用假设检测框架在现有工作中进行的简化。我们还从框架中获得了新的攻击算法,可以实现高AUC分数,同时还突出显示影响其性能的不同因素。我们的算法捕获模型中隐私损失的非常精确的近似,并且可以用作在机器学习模型中执行准确和了解的隐私风险的工具。我们对各种机器学习任务和基准数据集的攻击策略提供了彻底的实证评估。
translated by 谷歌翻译
Voice anti-spoofing systems are crucial auxiliaries for automatic speaker verification (ASV) systems. A major challenge is caused by unseen attacks empowered by advanced speech synthesis technologies. Our previous research on one-class learning has improved the generalization ability to unseen attacks by compacting the bona fide speech in the embedding space. However, such compactness lacks consideration of the diversity of speakers. In this work, we propose speaker attractor multi-center one-class learning (SAMO), which clusters bona fide speech around a number of speaker attractors and pushes away spoofing attacks from all the attractors in a high-dimensional embedding space. For training, we propose an algorithm for the co-optimization of bona fide speech clustering and bona fide/spoof classification. For inference, we propose strategies to enable anti-spoofing for speakers without enrollment. Our proposed system outperforms existing state-of-the-art single systems with a relative improvement of 38% on equal error rate (EER) on the ASVspoof2019 LA evaluation set.
translated by 谷歌翻译
本文调查了在自动语音识别(ASR)中有效地从个性化扬声器适应的神经网络声学模型(AMS)中检索扬声器信息。这个问题在联合学习的ASR声学模型的上下文中尤为重要,其中基于从多个客户端接收的更新在服务器上学习了全局模型。我们提出了一种方法来根据所谓指示器数据集的神经网络足迹分析神经网络AMS中的信息。使用此方法,我们开发了两个攻击模型,该模型旨在从更新的个性化模型推断扬声器身份,而无需访问实际用户的语音数据。TED-Lium 3语料库的实验表明,所提出的方法非常有效,可以提供1-2%的相同错误率(eer)。
translated by 谷歌翻译
Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge.We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing stateof-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
translated by 谷歌翻译
机器学习模型容易受到会员推理攻击的影响,在这种攻击中,对手的目的是预测目标模型培训数据集中是否包含特定样本。现有的攻击方法通常仅从给定的目标模型中利用输出信息(主要是损失)。结果,在成员和非成员样本都产生类似小损失的实际情况下,这些方法自然无法区分它们。为了解决这一限制,在本文中,我们提出了一种称为\系统的新攻击方法,该方法可以利用目标模型的整个培训过程中的成员资格信息来改善攻击性能。要将攻击安装在共同的黑盒环境中,我们利用知识蒸馏,并通过在不同蒸馏时期的中间模型中评估的损失表示成员资格信息,即\ emph {蒸馏损失轨迹},以及损失来自给定的目标模型。对不同数据集和模型体系结构的实验结果证明了我们在不同指标方面的攻击优势。例如,在Cinic-10上,我们的攻击至少达到6 $ \ times $ $阳性的速率,低阳性率为0.1 \%的速率比现有方法高。进一步的分析表明,在更严格的情况下,我们攻击的总体有效性。
translated by 谷歌翻译
平均意见评分(MOS)是语音合成系统的典型主观评估指标。由于收集MOS是耗时的,因此如果有自动评估的准确MOS预测模型,那将是可取的。在这项工作中,我们提出了一个新型MOS预测模型DDOS。DDOS利用域自适应预训练来进一步预训练自制的学习模型,以进行合成语音。并添加了一个建议的模块来对每个话语的意见分数分布进行建模。使用提出的组件,DDOS在BVCC数据集上的表现优于先前的作品。BC2019数据集的零射击传输结果得到显着改善。DDO还以系统级别的分数在Interspeech 2022 Voicemos挑战中赢得了第二名。
translated by 谷歌翻译
机器学习(ML)模型已广泛应用于各种应用,包括图像分类,文本生成,音频识别和图形数据分析。然而,最近的研究表明,ML模型容易受到隶属推导攻击(MIS),其目的是推断数据记录是否用于训练目标模型。 ML模型上的MIA可以直接导致隐私违规行为。例如,通过确定已经用于训练与某种疾病相关的模型的临床记录,攻击者可以推断临床记录的所有者具有很大的机会。近年来,MIS已被证明对各种ML模型有效,例如,分类模型和生成模型。同时,已经提出了许多防御方法来减轻米西亚。虽然ML模型上的MIAS形成了一个新的新兴和快速增长的研究区,但还没有对这一主题进行系统的调查。在本文中,我们对会员推论和防御进行了第一个全面调查。我们根据其特征提供攻击和防御的分类管理,并讨论其优点和缺点。根据本次调查中确定的限制和差距,我们指出了几个未来的未来研究方向,以激发希望遵循该地区的研究人员。这项调查不仅是研究社区的参考,而且还为该研究领域之外的研究人员带来了清晰的照片。为了进一步促进研究人员,我们创建了一个在线资源存储库,并与未来的相关作品继续更新。感兴趣的读者可以在https://github.com/hongshenghu/membership-inference-machine-learning-literature找到存储库。
translated by 谷歌翻译
个性化语音合成系统是一个非常期望的应用程序,其中系统可以使用罕见的登记录制与用户的语音产生语音。最近有两种主要方法可以在近期建立这样的系统:扬声器适配和扬声器编码。一方面,扬声器适配方法微调训练有素的多扬声器文本到语音(TTS)模型,只有少数注册样本。然而,它们需要至少有数千个微调步骤以进行高质量适应,使其难以在设备上施加。另一方面,扬声器编码方法将注册话语编码为扬声器嵌入。训练的TTS模型可以在相应的扬声器嵌入上综合用户的语音。然而,扬声器编码器遭受了所看到和看不见的扬声器之间的泛化差距。在本文中,我们建议将元学习算法应用于扬声器适应方法。更具体地说,我们使用模型不可知的元学习(MAML)作为多扬声器TTS模型的训练算法,其旨在找到一个很好的元初始化,以便快速地将模型调整到任何几次扬声器适应任务。因此,我们还可以将元训练的TTS模型调整为有效地解除扬声器。我们的实验比较了两个基线的提出方法(Meta-TTS):扬声器适配方法基线和扬声器编码方法基线。评估结果表明,Meta-TTS可以从扬声器适应基线的少量适应步骤中综合高扬声器相似性语音,而不是扬声器适配基线,并且在相同的训练方案下优于扬声器编码基线。当基线的扬声器编码器用额外的8371个扬声器进行预先培训时,Meta-TTS仍然可以越优于库特布特数据集的基线,并在VCTK数据集上实现可比结果。
translated by 谷歌翻译