在本文中,我们描述了RTZR团队Voxceleb扬声器识别挑战2022(VOXSRC-22)的最高得分提交,在封闭的数据集中,扬声器验证轨道1.最高执行的系统是7型型号的融合,其中包含3种不同类型的类型模型体系结构。我们专注于培训模型以学习周期性信息。因此,所有型号均以4-6秒的镜头训练,每次发言。此外,我们采用了较大的保证金微调策略,该策略在我们的某些融合模型的先前挑战上表现出良好的表现。在评估过程中,我们应用了具有自适应对称归一化(AS-NORM)和矩阵得分平均值(MSA)的评分方法。最后,我们将模型与逻辑回归混合在一起,以融合所有受过训练的模型。最终提交在VOXSRC22测试集上实现了0.165 DCF和2.912%EER。
translated by 谷歌翻译
本文介绍了Speakin团队提交的SPEAKER验证(SV)系统,该系统针对2022年远场演讲者验证挑战(FFSVC2022)的任务2和任务2。挑战的SV任务集中在完全监督的远场演讲者验证(任务1)和半监督远场扬声器验证(任务2)的问题上。在任务1中,我们将Voxceleb和FFSVC2020数据集用作火车数据集。对于任务2,我们仅将Voxceleb数据集用作火车集。为此挑战开发了基于重新连接和基于REPVGG的架构。全局统计池结构和MQMHA池结构用于跨时间汇总框架级特征,以获得语音级别的表示。我们采用了Am-Softmax和Aam-Softmax来对产生的嵌入进行分类。我们创新提出了一种分阶段的转移学习方法。在训练阶段,我们保留扬声器的权重,并且在此阶段没有积极的样本来训练它们。然后,我们在第二阶段用正面和负样品微调这些权重。与传统的转移学习策略相比,该策略可以更好地改善模型性能。亚均值和标志的后端方法用于解决域不匹配的问题。在融合阶段,任务1中融合了三个模型,并在任务2中融合了两个模型。在FFSVC2022排行榜上,我们提交的EER为3.0049%,在Task1中,相应的MindCF为0.2938。在任务2中,EER和MindCF分别为6.2060%和0.5232。我们的方法可以提高表现出色,并在两项挑战任务中排名第一。
translated by 谷歌翻译
本报告描述了我们针对CN-CELEB演讲者识别挑战2022(CNSRC 2022)任务的发言人验证系统。这项挑战包括两项任务,即演讲者验证(SV)和说话者检索(SR)。 SV任务涉及两个轨道:固定轨道和开放轨道。在固定轨道中,我们仅使用CN-CELEB.T作为训练集。对于SV任务和SR任务的开放轨道,我们添加了开源音频数据。为此挑战开发了基于重新连接的基于RESNET,基于REPVGG和基于TDNN的架构。全局统计池结构和MQMHA池结构用于跨时间汇总框架级特征,以获得语音级别的表示。我们采用了Am-Softmax和Aam-Softmax与子中心方法相结合,以对所得的嵌入进行分类。我们还使用了大规模细微调整策略来进一步提高模型性能。在后端,使用了亚均值和雅语。在SV任务固定轨道中,我们的系统是五个型号的融合,并且在SV任务打开轨道中融合了两个型号。我们在SR任务中使用了一个系统。我们的方法带来了卓越的性能,并成为SV任务的开放轨道,在SV任务的固定轨道中的第二名以及SR任务中的第三名。
translated by 谷歌翻译
在这份技术报告中,我们描述了Voxceleb演讲者识别挑战2022(VOXSRC-22)的Royalflush提交。我们的提交内容包含曲目1,该曲目1用于监督的说话者验证和曲目3,该曲目适用于半监督者验证。对于轨道1,我们开发了具有对称体系结构的功能强大的基于U-NET的扬声器嵌入提取器。拟议的系统在验证集上获得了EER的2.06%,在MindCF中获得了0.1293。与最先进的ECAPA-TDNN相比,它在EER中获得了20.7%的相对提高,而MindCF的相对提高了22.70%。对于轨道3,我们采用了源域监督和目标域自学的联合培训,以获取扬声器嵌入提取器。随后的聚类过程可以获得目标域伪扬声器标签。我们使用所有源和目标域数据以有监督的方式适应说话者嵌入提取器,从而可以充分利用这两个域信息。此外,可以重复聚类和监督域的适应性,直到验证集对性能收敛为止。我们的最终提交是融合了10种型号,并在验证集上实现了7.75%EER和0.3517 MindCF。
translated by 谷歌翻译
本文介绍了STC有限公司的描述,该系统提交给NIST 2021扬声器识别评估,用于固定和开放的培训条件。这些系统由许多不同的子系统组成,基于使用深神经网络作为特征提取器。在NIST 2021 SRE挑战期间,我们专注于培训最先进的深部扬声器嵌入式提取器,如Contive角度裕度的损耗功能。此外,通过自动语音识别中的Wav2Vec 2.0特征的最近成功的启发,我们探讨了这种方法对提交的扬声器验证的有效性。根据我们的观察,预先训练的大wave2vec 2.0模型的微调为开放式条件提供了最佳的开展系统。我们对固定条件的WAV2VEC 2.0提取器的实验表明,与对比预测编码损失的无监督自回归预测将打开从原始语音信号训练强大的变压器的提取器。对于视频模型,我们通过RetinaFace面部探测器和深签名脸部嵌入式提取器开发了我们的最佳解决方案,培训了大面孔图像数据集。主要系统的最终结果是通过在分数水平上的不同配置融合的不同配置而获得,然后进行评分校准。
translated by 谷歌翻译
最近,注意机制已成功应用于基于神经网络的说话者验证系统。将挤压和兴奋的块纳入卷积神经网络中的表现出色。但是,它使用全球平均池(GAP)简单地沿时间和频率维度平均功能,这无法在功能地图中保留足够的扬声器信息。在这项研究中,我们表明GAP是时间频域在数学上仅使用频率分解中最低频率分量的特殊情况。为了增强扬声器信息提取能力,我们建议利用多频信息,并设计两个新颖的有效注意模块,称为单频率单通道(SFSC)注意模块和多频单通道(MFSC)注意模块。提出的注意模块可以根据DCT有效地从多个频率组件中捕获更多扬声器信息。我们在Voxceleb数据集上进行了全面的实验,并对第148个UTD法医语料库进行了探测评估。实验结果表明,我们提出的SFSC和MFSC注意模块可以有效地产生更具歧视性的扬声器表示,并且优于RESNET34-SE和ECAPA-TDNN系统,而EER降低了20.9%和20.2%,而无需添加额外的网络参数。
translated by 谷歌翻译
在最近的研究中,自我监管的预训练模型倾向于在转移学习中优于监督的预训练模型。特别是,可以在语音应用中使用语音级语音表示的自我监督学习(SSL),这些语音应用需要歧视性表示话语中一致属性的表示:说话者,语言,情感和年龄。现有的框架级别的自我监督语音表示,例如WAV2VEC,可以用作带有汇总的话语级表示,但这些模型通常很大。也有SSL技术可以学习话语级的表示。最成功的方法之一是一种对比方法,它需要负采样:选择替代样品与当前样品(锚)对比。但是,这并不确保所有负面样本属于与没有标签的锚类别不同的​​类别。本文应用了一种非对抗性的自我监督方法来学习话语级的嵌入。我们对没有标签(Dino)从计算机视觉到语音进行了调整,没有标签(Dino)。与对比方法不同,Dino不需要负抽样。我们将Dino与受到监督方式训练的X-Vector进行了比较。当转移到下游任务(说话者验证,语音情绪识别(SER)和阿尔茨海默氏病检测)时,Dino的表现优于X-Vector。我们研究了转移学习过程中几个方面的影响,例如将微调过程分为步骤,块长度或增强。在微调过程中,首先调整最后一个仿射层,然后整个网络一次超过微调。使用较短的块长度,尽管它们产生了更多不同的输入,但并不一定会提高性能,这意味着至少需要具有特定长度的语音段才能为每个应用程序提高性能。增强对SER有帮助。
translated by 谷歌翻译
在本文中,我们提出了自我监督的发言者表示学习策略,该策略包括在前端的引导平衡扬声器表示学习和在后端的不确定性意识的概率扬声器嵌入训练。在前端阶段,我们通过具有均匀性正则化术语的引导训练方案来学习扬声器表示。在后端阶段,通过最大化属于同一扬声器的语音样本之间的相互似然分数来估计概率扬声器嵌入,这不仅提供扬声器表示,而且提供数据不确定性。实验结果表明,拟议的举止均衡训练策略可以有效地帮助了解扬声器表示,并以基于对比学习的传统方法优越。此外,我们展示了集成的两级框架在eer和mindcf方面进一步改善了VoxceleB1测试中的扬声器验证性能。
translated by 谷歌翻译
考虑到大量未标记的语音数据和高标签成本,无监督的学习方法对于更好的系统开发至关重要。最成功的方法之一是对比度的自我监督方法,这些方法需要负采样:采样替代样品与当前样品(锚)对比。但是,很难确保所有负样本属于与没有标签的锚类别不同的​​类别。本文在未标记的语音语料库上应用了一种非对抗性的自我监督学习方法来学习话语级的嵌入。我们使用没有标签的蒸馏(Dino),在计算机视觉中提出,并将其改编为语音域。与对比度方法不同,Dino不需要负采样。这些嵌入是根据说话者验证和情感识别评估的。在说话者验证中,无监督的恐龙与余弦评分嵌入了voxceleb1测试试验中的4.38%EER。这表现优于最佳的对比度自我监督方法,而EER中的相对相对40%。不需要扬声器标签的迭代伪标记训练管道将EER进一步提高到1.89%。在情感识别中,Iemocap,Crema-D和MSP播客的Micro-F1得分分别进行了60.87、79.21和56.98%的恐龙。结果暗示着恐龙嵌入到不同语音应用中的普遍性。
translated by 谷歌翻译
近年来见证了自动扬声器验证(ASV)的非凡发展。但是,先前的作品表明,最新的ASV模型非常容易受到语音欺骗的攻击,而最近提出的高性能欺骗对策(CM)模型仅专注于独立的反欺骗任务,而忽略了该模型随后的发言人验证过程。如何将CM和ASV集成在一起仍然是一个悬而未决的问题。最近发生了欺骗意识的说话者验证(SASV)挑战,即当共同优化CM和ASV子系统时,可以提供更好的性能。在挑战的情况下,参与者提出的集成系统必须同时拒绝冒名顶替者和欺骗目标扬声器的攻击,这些攻击者直觉有效地与可靠,欺骗的ASV系统的期望相匹配。这项工作着重于基于融合的SASV解决方案,并提出了一个多模型融合框架,以利用多个最先进的ASV和CM模型的功能。拟议的框架将SASV-EER从8.75%提高到1.17 \%,与SASV挑战中最佳基线系统相比,相对改善为86%。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
The objective of this paper is speaker recognition under noisy and unconstrained conditions.We make two key contributions. First, we introduce a very large-scale audio-visual speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset.Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions. The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin.
translated by 谷歌翻译
通过未计算的数据情况和缺乏本领域缺乏标准基准的动机,我们补充了我们以前的努力,并提出了一个专为培训和评估文本无关的多通道扬声器验证系统的全面语料库。还可以容易地用于DERE失去,去噪和语音增强的实验。我们通过利用VOXECEB数据集的清洁部分顶部的数据仿真来解决缺乏多通道训练数据的缺乏问题。开发和评估试验基于复杂的传统的声音,这些声音在复杂的环境环境(声音)语料库中,我们修改以提供多渠道试验。我们发布从公共来源创建数据集的完整食谱作为Multisv语料库,我们提供了两种多通道扬声器验证系统,其中两个多通道扬声器验证系统,基于神经网络的波束成形,基于预测理想二进制掩码或更新的CONV-TASNet更新。
translated by 谷歌翻译
在本文中,我们提出了一种解决方案,以允许扬声器条件语音模型,例如VoiceFilter-Lite,以支持单个通过中的任意数量的注册用户。这是通过使用多个扬声器嵌入的注意机制来实现,以计算单个细小嵌入,然后将其用作模型的侧面输入。我们实现了多用户VoiceFilter-Lite并为三个任务进行了评估:(1)流自动语音识别(ASR)任务; (2)独立于文本的扬声器验证任务; (3)个性化关键级检测任务,其中ASR必须在嘈杂的环境中检测来自多个注册用户的关键次数。我们的实验表明,在最多四个注册的用户中,多用户VoiceFilter-Lite能够在具有重叠语音时显着降低语音识别和扬声器验证错误,而不会影响其他声学条件下的性能。这种细心的扬声器嵌入方法也可以轻松应用于其他扬声器条件模型,如个人VAD和个性化ASR。
translated by 谷歌翻译
最先进的说话者验证系统本质上取决于某种人类监督,因为它们接受了大量标记数据的培训。但是,手动注释的话语缓慢,昂贵,无法扩展到当今可用的数据量。在这项研究中,我们通过直接从原始音频中学习表征来探索说话者验证的自我监督学习。目的是生成具有较小的言论扬声器和较大言论扬声器差异的稳健扬声器嵌入。我们的方法基于最新信息最大化学习框架和密集的数据增强预处理步骤。我们在表明它们与对比度损失相结合之前表明它们实现更好的性能之前,评估了这些方法在没有对比样本的情况下工作的能力。此外,我们进行实验表明,与现有技术相比,我们的方法达到了竞争成果,并且在用一小部分标记数据进行微调时,与监督基线相比,可以获得更好的性能。
translated by 谷歌翻译
没有发言者标签的培训扬声器 - 识别和强大的发言者验证系统仍然挑战和值得探索。在这项研究中,我们提出了一种有效的自我监督的学习框架和一种新的正规化策略,以促进自我监督的发言者代表学习。不同于基于对比的自我监督的学习方法,所提出的自我监督正则化(SSREG)专注于正数据对潜在的潜在表示之间的相似性。我们还探讨了替代在线数据增强策略对时域和频域的有效性。凭借我们强大的在线数据增强策略,所提出的SSREG显示了自我监督学习的潜力,而不使用负对对,它可以显着提高自我监督扬声器表示学习与简单的暹罗网络架构的表现。 VOXECEB数据集的综合实验表明,我们提出的自我监督方法通过增加有效的自我监督正则化和胜过其他以前的作品来获得23.4%的相对改善。
translated by 谷歌翻译
大多数最新的说话者验证架构都采用了多尺度处理和频道注意机制。这些模型的卷积层通常具有固定的内核大小,例如3或5。在本研究中,我们进一步为这一研究采用了选择性核心注意(SKA)机制。SKA机制允许每个卷积层以数据驱动的方式自适应地选择内核大小。它基于利用频率和通道域的注意机制。我们首先将现有的SKA模块应用于我们的基线。然后,我们提出了两个SKA变体,其中第一个变体在ECAPA-TDNN模型的前面应用,另一个变体与RES2NET骨干块结合使用。通过广泛的实验,我们证明了我们提出的两个SKA变体始终提高性能,并在三个不同的评估方案上进行测试时是互补的。
translated by 谷歌翻译
Speaker embedding extractors significantly influence the performance of clustering-based speaker diarisation systems. Conventionally, only one embedding is extracted from each speech segment. However, because of the sliding window approach, a segment easily includes two or more speakers owing to speaker change points. This study proposes a novel embedding extractor architecture, referred to as a high-resolution embedding extractor (HEE), which extracts multiple high-resolution embeddings from each speech segment. Hee consists of a feature-map extractor and an enhancer, where the enhancer with the self-attention mechanism is the key to success. The enhancer of HEE replaces the aggregation process; instead of a global pooling layer, the enhancer combines relative information to each frame via attention leveraging the global context. Extracted dense frame-level embeddings can each represent a speaker. Thus, multiple speakers can be represented by different frame-level features in each segment. We also propose an artificially generating mixture data training framework to train the proposed HEE. Through experiments on five evaluation sets, including four public datasets, the proposed HEE demonstrates at least 10% improvement on each evaluation set, except for one dataset, which we analyse that rapid speaker changes less exist.
translated by 谷歌翻译
在商业应用程序中使用基于扬声器验证(SV)的系统时,重要的是客户与他们的性别,年龄或种族有关。在本文中,我们分析了性别和年龄对SV的影响,并在不同性别和年龄组中发现,对于不同性别和年龄组的期望的常见验证率(FRR),不同的性别和年龄组不同。为了优化所有用户的FRR,我们提出了一种关于SV的上下文(例如性别,年龄)自适应阈值框架。这些上下文可以作为许多实际应用程序的先前信息。我们还提出了一个连接的性别/年龄检测模型,以在没有这样的事先信息的情况下进行算法导出的背景。我们通过实验表明我们的上下文 - 自适应阈值化方法在建立更有效的包容性SV系统方面是有效的。具体而言,我们表明我们可以通过使用特定于性别特定阈值对VoxceB1测试设置的所需性别来减少特定性别的FRR。对OGI Kids的语音语料库类似的分析表明,通过使用年龄特定的阈值,我们可以显着减少某些年龄段的FRR,以便远远。
translated by 谷歌翻译
Voice anti-spoofing systems are crucial auxiliaries for automatic speaker verification (ASV) systems. A major challenge is caused by unseen attacks empowered by advanced speech synthesis technologies. Our previous research on one-class learning has improved the generalization ability to unseen attacks by compacting the bona fide speech in the embedding space. However, such compactness lacks consideration of the diversity of speakers. In this work, we propose speaker attractor multi-center one-class learning (SAMO), which clusters bona fide speech around a number of speaker attractors and pushes away spoofing attacks from all the attractors in a high-dimensional embedding space. For training, we propose an algorithm for the co-optimization of bona fide speech clustering and bona fide/spoof classification. For inference, we propose strategies to enable anti-spoofing for speakers without enrollment. Our proposed system outperforms existing state-of-the-art single systems with a relative improvement of 38% on equal error rate (EER) on the ASVspoof2019 LA evaluation set.
translated by 谷歌翻译