近年来见证了自动扬声器验证(ASV)的非凡发展。但是,先前的作品表明,最新的ASV模型非常容易受到语音欺骗的攻击,而最近提出的高性能欺骗对策(CM)模型仅专注于独立的反欺骗任务,而忽略了该模型随后的发言人验证过程。如何将CM和ASV集成在一起仍然是一个悬而未决的问题。最近发生了欺骗意识的说话者验证(SASV)挑战,即当共同优化CM和ASV子系统时,可以提供更好的性能。在挑战的情况下,参与者提出的集成系统必须同时拒绝冒名顶替者和欺骗目标扬声器的攻击,这些攻击者直觉有效地与可靠,欺骗的ASV系统的期望相匹配。这项工作着重于基于融合的SASV解决方案,并提出了一个多模型融合框架,以利用多个最先进的ASV和CM模型的功能。拟议的框架将SASV-EER从8.75%提高到1.17 \%,与SASV挑战中最佳基线系统相比,相对改善为86%。
translated by 谷歌翻译
Voice anti-spoofing systems are crucial auxiliaries for automatic speaker verification (ASV) systems. A major challenge is caused by unseen attacks empowered by advanced speech synthesis technologies. Our previous research on one-class learning has improved the generalization ability to unseen attacks by compacting the bona fide speech in the embedding space. However, such compactness lacks consideration of the diversity of speakers. In this work, we propose speaker attractor multi-center one-class learning (SAMO), which clusters bona fide speech around a number of speaker attractors and pushes away spoofing attacks from all the attractors in a high-dimensional embedding space. For training, we propose an algorithm for the co-optimization of bona fide speech clustering and bona fide/spoof classification. For inference, we propose strategies to enable anti-spoofing for speakers without enrollment. Our proposed system outperforms existing state-of-the-art single systems with a relative improvement of 38% on equal error rate (EER) on the ASVspoof2019 LA evaluation set.
translated by 谷歌翻译
以前的作品表明,自动扬声器验证(ASV)严重易受恶意欺骗攻击,例如重播,合成语音和最近出现的对抗性攻击。巨大的努力致力于捍卫ANV反击重播和合成语音;但是,只有几种方法探讨了对抗对抗攻击。所有现有的解决ASV对抗性攻击方法都需要对对抗性样本产生的知识,但是防守者知道野外攻击者应用的确切攻击算法是不切实际的。这项工作是第一个在不知道特定攻击算法的情况下对ASV进行对抗性防御。灵感来自自我监督的学习模型(SSLMS),其具有减轻输入中的浅表噪声并重建中断的浅层样本的优点,这项工作至于对噪声的对抗扰动以及SSLMS对ASV的对抗性防御。具体而言,我们建议从两种角度进行对抗性防御:1)对抗扰动纯化和2)对抗扰动检测。实验结果表明,我们的检测模块通过检测对抗性样本的精度约为80%,有效地屏蔽了ASV。此外,由于对ASV的对抗防御性能没有共同的指标,因此考虑到纯化和基于净化的方法,这项工作也将评估指标正式地进行对抗防御。我们真诚地鼓励未来的作品基于拟议的评估框架基于拟议的评估框架来基准。
translated by 谷歌翻译
本文介绍了Speakin团队提交的SPEAKER验证(SV)系统,该系统针对2022年远场演讲者验证挑战(FFSVC2022)的任务2和任务2。挑战的SV任务集中在完全监督的远场演讲者验证(任务1)和半监督远场扬声器验证(任务2)的问题上。在任务1中,我们将Voxceleb和FFSVC2020数据集用作火车数据集。对于任务2,我们仅将Voxceleb数据集用作火车集。为此挑战开发了基于重新连接和基于REPVGG的架构。全局统计池结构和MQMHA池结构用于跨时间汇总框架级特征,以获得语音级别的表示。我们采用了Am-Softmax和Aam-Softmax来对产生的嵌入进行分类。我们创新提出了一种分阶段的转移学习方法。在训练阶段,我们保留扬声器的权重,并且在此阶段没有积极的样本来训练它们。然后,我们在第二阶段用正面和负样品微调这些权重。与传统的转移学习策略相比,该策略可以更好地改善模型性能。亚均值和标志的后端方法用于解决域不匹配的问题。在融合阶段,任务1中融合了三个模型,并在任务2中融合了两个模型。在FFSVC2022排行榜上,我们提交的EER为3.0049%,在Task1中,相应的MindCF为0.2938。在任务2中,EER和MindCF分别为6.2060%和0.5232。我们的方法可以提高表现出色,并在两项挑战任务中排名第一。
translated by 谷歌翻译
Previous databases have been designed to further the development of fake audio detection. However, fake utterances are mostly generated by altering timbre, prosody, linguistic content or channel noise of original audios. They ignore a fake situation, in which the attacker manipulates an acoustic scene of the original audio with another forgery one. It will pose a major threat to our society if some people misuse the manipulated audio with malicious purpose. Therefore, this motivates us to fill in the gap. This paper designs such a dataset for scene fake audio detection (SceneFake). A manipulated audio in the SceneFake dataset involves only tampering the acoustic scene of an utterance by using speech enhancement technologies. We can not only detect fake utterances on a seen test set but also evaluate the generalization of fake detection models to unseen manipulation attacks. Some benchmark results are described on the SceneFake dataset. Besides, an analysis of fake attacks with different speech enhancement technologies and signal-to-noise ratios are presented on the dataset. The results show that scene manipulated utterances can not be detected reliably by the existing baseline models of ASVspoof 2019. Furthermore, the detection of unseen scene manipulation audio is still challenging.
translated by 谷歌翻译
本文介绍了第一个致力于2020挑战的结果和分析,重点是开发语音技术的匿名解决方案。我们提供了对提交的系统和评估结果的分析,提供了挑战设计的系统概述。特别是,我们描述了用于系统开发和评估的语音匿名任务和数据集。此外,我们呈现不同的攻击模型和相关目标和主观评估指标。我们介绍了两个匿名化的基线,并提供了由挑战参与者开发的匿名化系统的摘要描述。我们向基线和提交的系统报告客观和主观评估结果。此外,我们提出了作为评估后分析的一部分开发的替代隐私度量和攻击模型的实验结果。最后,我们总结了我们的见解和观察,这将影响下一个语音普遍挑战版的设计和未来语音匿名化研究的某些方向。
translated by 谷歌翻译
自动扬声器验证(ASV)已在现实生活中广泛用于身份认证。但是,随着语音转换的快速发展,语音合成算法和记录设备质量的提高,ASV系统很容易受到欺骗攻击。近年来,有关合成和重播语音检测的许多作品,研究人员提出了许多基于手工制作的特征的反欺骗方法,以提高合成和重播语音检测系统的准确性和鲁棒性。但是,使用手工制作的功能而不是原始波形将丢失某些信息进行抗旋转,这将降低系统的检测性能。受图像分类任务中Convnext的有希望的性能的启发,我们将Convnext网络体系结构相应地扩展到SPOOF攻击任务,并提出了端到端的反欺骗模型。通过将扩展体系结构与频道注意块相结合,提出的模型可以专注于最有用的语音表示子频段,以改善反欺骗性的性能。实验表明,对于ASVSPOOF 2019 LA评估数据集和PA评估数据集,我们提出的最佳单个系统可以达到1.88%和2.79%的误差率,这证明了该模型的抗SpoFofing能力。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
开发了对策(CM)模型,以保护自动扬声器验证(ASV)系统免受欺骗攻击,并防止导致的个人信息泄漏。基于实用性和安全性考虑,CM模型通常部署在边缘设备上,这些设备的计算资源和存储空间比基于云的系统更有限。这项工作建议使用广义的端到端(GE2E)预训练和对抗性微调来提高性能,并应用知识蒸馏(KD)来减少CM模型的大小。在ASVSPOOF 2021逻辑访问任务的评估阶段,轻质重新设备达到最小T-DCF 0.2695和EER 3.54%。与教师模型相比,轻量级学生模型仅使用22.5%的参数和21.1%的倍数和累积教师模型操作数。
translated by 谷歌翻译
在本文中,我们描述了RTZR团队Voxceleb扬声器识别挑战2022(VOXSRC-22)的最高得分提交,在封闭的数据集中,扬声器验证轨道1.最高执行的系统是7型型号的融合,其中包含3种不同类型的类型模型体系结构。我们专注于培训模型以学习周期性信息。因此,所有型号均以4-6秒的镜头训练,每次发言。此外,我们采用了较大的保证金微调策略,该策略在我们的某些融合模型的先前挑战上表现出良好的表现。在评估过程中,我们应用了具有自适应对称归一化(AS-NORM)和矩阵得分平均值(MSA)的评分方法。最后,我们将模型与逻辑回归混合在一起,以融合所有受过训练的模型。最终提交在VOXSRC22测试集上实现了0.165 DCF和2.912%EER。
translated by 谷歌翻译
无监督的零射声语音转换(VC)旨在修改话语的扬声器特性,以匹配看不见的目标扬声器,而无需依赖并行培训数据。最近,已经显示了语音表示的自我监督学习在不使用转录物的情况下产生有用的语言单元,这可以直接传递给VC模型。在本文中,我们展示了通过使用长度重采样解码器来实现高质量的音频样本,这使得VC模型能够与不同的语言特征提取器和声码器一起工作,而无需它们以相同的序列长度运行。我们表明,我们的方法可以胜过VCTK数据集的许多基线。在不修改架构的情况下,我们进一步展示了a)使用来自同一扬声器的不同音频段,b)添加循环一致性损失,并且c)添加扬声器分类损失可以有助于学习更好的扬声器嵌入。我们的模型使用这些技术训练了Libritts,实现了最佳性能,产生了音频样本对目标扬声器的声音,同时保留了在字符错误率方面与实际人类话语相当的语言内容。
translated by 谷歌翻译
Speaker embedding extractors significantly influence the performance of clustering-based speaker diarisation systems. Conventionally, only one embedding is extracted from each speech segment. However, because of the sliding window approach, a segment easily includes two or more speakers owing to speaker change points. This study proposes a novel embedding extractor architecture, referred to as a high-resolution embedding extractor (HEE), which extracts multiple high-resolution embeddings from each speech segment. Hee consists of a feature-map extractor and an enhancer, where the enhancer with the self-attention mechanism is the key to success. The enhancer of HEE replaces the aggregation process; instead of a global pooling layer, the enhancer combines relative information to each frame via attention leveraging the global context. Extracted dense frame-level embeddings can each represent a speaker. Thus, multiple speakers can be represented by different frame-level features in each segment. We also propose an artificially generating mixture data training framework to train the proposed HEE. Through experiments on five evaluation sets, including four public datasets, the proposed HEE demonstrates at least 10% improvement on each evaluation set, except for one dataset, which we analyse that rapid speaker changes less exist.
translated by 谷歌翻译
我们引入了一种新的自动评估方法,用于说话者相似性评估,这与人类感知得分一致。现代神经文本到语音模型需要大量的干净训练数据,这就是为什么许多解决方案从单个扬声器模型转换为在许多不同扬声器的示例中训练的解决方案的原因。多扬声器模型带来了新的可能性,例如更快地创建新声音,也是一个新问题 - 扬声器泄漏,其中合成示例的扬声器身份可能与目标扬声器的示例不符。当前,发现此问题的唯一方法是通过昂贵的感知评估。在这项工作中,我们提出了一种评估说话者相似性的自动方法。为此,我们扩展了有关说话者验证系统的最新工作,并评估不同的指标和说话者嵌入模型如何以隐藏的参考和锚(Mushra)分数反映多个刺激。我们的实验表明,我们可以训练一个模型来预测扬声器嵌入的扬声器相似性,其精度为0.96的扬声器嵌入,并且在话语级别上最高0.78 Pearson分数。
translated by 谷歌翻译
对于新参与者 - 执行摘要:(1)任务是为语音数据开发语音匿名系统,该系统隐藏了说话者的语音身份,同时保护语言内容,副语言属性,清晰度和自然性。 (2)除3种不同的基线匿名系统,评估脚本和指标外,还提供了培训,开发和评估数据集。参与者应用其开发的匿名系统,运行评估脚本并向组织者提交客观评估结果和匿名语音数据。 (3)结果将在与Interspeech 2022结合的研讨会上展示,邀请所有参与者介绍其挑战系统并提交其他研讨会论文。对于熟悉语音挑战的读者 - 更改W.R.T. 2020年:(1)以自动扬声器验证(ASV)系统的形式进行了更强的半信息攻击模型,该系统接受了匿名(每位)语音数据的训练。 (2)互补指标包括等于误差率(EER)作为隐私指标,单词错误率(WER)作为主要实用性度量,以及音调相关性和声音独特性作为辅助效用度量标准。 (3)基于一组最小目标隐私要求的新排名策略。
translated by 谷歌翻译
本报告描述了我们针对CN-CELEB演讲者识别挑战2022(CNSRC 2022)任务的发言人验证系统。这项挑战包括两项任务,即演讲者验证(SV)和说话者检索(SR)。 SV任务涉及两个轨道:固定轨道和开放轨道。在固定轨道中,我们仅使用CN-CELEB.T作为训练集。对于SV任务和SR任务的开放轨道,我们添加了开源音频数据。为此挑战开发了基于重新连接的基于RESNET,基于REPVGG和基于TDNN的架构。全局统计池结构和MQMHA池结构用于跨时间汇总框架级特征,以获得语音级别的表示。我们采用了Am-Softmax和Aam-Softmax与子中心方法相结合,以对所得的嵌入进行分类。我们还使用了大规模细微调整策略来进一步提高模型性能。在后端,使用了亚均值和雅语。在SV任务固定轨道中,我们的系统是五个型号的融合,并且在SV任务打开轨道中融合了两个型号。我们在SR任务中使用了一个系统。我们的方法带来了卓越的性能,并成为SV任务的开放轨道,在SV任务的固定轨道中的第二名以及SR任务中的第三名。
translated by 谷歌翻译
The objective of this paper is speaker recognition under noisy and unconstrained conditions.We make two key contributions. First, we introduce a very large-scale audio-visual speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset.Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions. The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin.
translated by 谷歌翻译
在最近的研究中,自我监管的预训练模型倾向于在转移学习中优于监督的预训练模型。特别是,可以在语音应用中使用语音级语音表示的自我监督学习(SSL),这些语音应用需要歧视性表示话语中一致属性的表示:说话者,语言,情感和年龄。现有的框架级别的自我监督语音表示,例如WAV2VEC,可以用作带有汇总的话语级表示,但这些模型通常很大。也有SSL技术可以学习话语级的表示。最成功的方法之一是一种对比方法,它需要负采样:选择替代样品与当前样品(锚)对比。但是,这并不确保所有负面样本属于与没有标签的锚类别不同的​​类别。本文应用了一种非对抗性的自我监督方法来学习话语级的嵌入。我们对没有标签(Dino)从计算机视觉到语音进行了调整,没有标签(Dino)。与对比方法不同,Dino不需要负抽样。我们将Dino与受到监督方式训练的X-Vector进行了比较。当转移到下游任务(说话者验证,语音情绪识别(SER)和阿尔茨海默氏病检测)时,Dino的表现优于X-Vector。我们研究了转移学习过程中几个方面的影响,例如将微调过程分为步骤,块长度或增强。在微调过程中,首先调整最后一个仿射层,然后整个网络一次超过微调。使用较短的块长度,尽管它们产生了更多不同的输入,但并不一定会提高性能,这意味着至少需要具有特定长度的语音段才能为每个应用程序提高性能。增强对SER有帮助。
translated by 谷歌翻译
视听扬声器日复速度旨在检测使用听觉和视觉信号时的``谁说话。现有的视听深度数据集主要专注于会议室或新闻工作室等室内环境,这些工作室与电影,纪录片和观众情景喜剧等许多情景中的野外视频完全不同。要创建一个能够有效地比较野外视频的日复速度方法的测试平台,我们向AVA电影数据集注释说话者深度标签,并创建一个名为AVA-AVD的新基准。由于不同的场景,复杂的声学条件和完全偏离屏幕扬声器,该基准是挑战。然而,如何处理偏离屏幕和屏幕上的扬声器仍然是一个关键挑战。为了克服它,我们提出了一种新的视听关系网络(AVR-Net),它引入了有效的模态掩模,以基于可见性捕获辨别信息。实验表明,我们的方法不仅可以优于最先进的方法,而且可以更加强大,因为改变屏幕扬声器的比率。消融研究证明了拟议的AVR-NET和尤其是日复一化的模态掩模的优点。我们的数据和代码将公开可用。
translated by 谷歌翻译
In this paper, we propose dictionary attacks against speaker verification - a novel attack vector that aims to match a large fraction of speaker population by chance. We introduce a generic formulation of the attack that can be used with various speech representations and threat models. The attacker uses adversarial optimization to maximize raw similarity of speaker embeddings between a seed speech sample and a proxy population. The resulting master voice successfully matches a non-trivial fraction of people in an unknown population. Adversarial waveforms obtained with our approach can match on average 69% of females and 38% of males enrolled in the target system at a strict decision threshold calibrated to yield false alarm rate of 1%. By using the attack with a black-box voice cloning system, we obtain master voices that are effective in the most challenging conditions and transferable between speaker encoders. We also show that, combined with multiple attempts, this attack opens even more to serious issues on the security of these systems.
translated by 谷歌翻译
State-of-the-art speaker verification frameworks have typically focused on speech enhancement techniques with increasingly deeper (more layers) and wider (number of channels) models to improve their verification performance. Instead, this paper proposes an approach to increase the model resolution capability using attention-based dynamic kernels in a convolutional neural network to adapt the model parameters to be feature-conditioned. The attention weights on the kernels are further distilled by channel attention and multi-layer feature aggregation to learn global features from speech. This approach provides an efficient solution to improving representation capacity with lower data resources. This is due to the self-adaptation to inputs of the structures of the model parameters. The proposed dynamic convolutional model achieved 1.62\% EER and 0.18 miniDCF on the VoxCeleb1 test set and has a 17\% relative improvement compared to the ECAPA-TDNN.
translated by 谷歌翻译