最先进的说话者验证系统本质上取决于某种人类监督,因为它们接受了大量标记数据的培训。但是,手动注释的话语缓慢,昂贵,无法扩展到当今可用的数据量。在这项研究中,我们通过直接从原始音频中学习表征来探索说话者验证的自我监督学习。目的是生成具有较小的言论扬声器和较大言论扬声器差异的稳健扬声器嵌入。我们的方法基于最新信息最大化学习框架和密集的数据增强预处理步骤。我们在表明它们与对比度损失相结合之前表明它们实现更好的性能之前,评估了这些方法在没有对比样本的情况下工作的能力。此外,我们进行实验表明,与现有技术相比,我们的方法达到了竞争成果,并且在用一小部分标记数据进行微调时,与监督基线相比,可以获得更好的性能。
translated by 谷歌翻译
没有发言者标签的培训扬声器 - 识别和强大的发言者验证系统仍然挑战和值得探索。在这项研究中,我们提出了一种有效的自我监督的学习框架和一种新的正规化策略,以促进自我监督的发言者代表学习。不同于基于对比的自我监督的学习方法,所提出的自我监督正则化(SSREG)专注于正数据对潜在的潜在表示之间的相似性。我们还探讨了替代在线数据增强策略对时域和频域的有效性。凭借我们强大的在线数据增强策略,所提出的SSREG显示了自我监督学习的潜力,而不使用负对对,它可以显着提高自我监督扬声器表示学习与简单的暹罗网络架构的表现。 VOXECEB数据集的综合实验表明,我们提出的自我监督方法通过增加有效的自我监督正则化和胜过其他以前的作品来获得23.4%的相对改善。
translated by 谷歌翻译
在本文中,我们提出了自我监督的发言者表示学习策略,该策略包括在前端的引导平衡扬声器表示学习和在后端的不确定性意识的概率扬声器嵌入训练。在前端阶段,我们通过具有均匀性正则化术语的引导训练方案来学习扬声器表示。在后端阶段,通过最大化属于同一扬声器的语音样本之间的相互似然分数来估计概率扬声器嵌入,这不仅提供扬声器表示,而且提供数据不确定性。实验结果表明,拟议的举止均衡训练策略可以有效地帮助了解扬声器表示,并以基于对比学习的传统方法优越。此外,我们展示了集成的两级框架在eer和mindcf方面进一步改善了VoxceleB1测试中的扬声器验证性能。
translated by 谷歌翻译
在最近的研究中,自我监管的预训练模型倾向于在转移学习中优于监督的预训练模型。特别是,可以在语音应用中使用语音级语音表示的自我监督学习(SSL),这些语音应用需要歧视性表示话语中一致属性的表示:说话者,语言,情感和年龄。现有的框架级别的自我监督语音表示,例如WAV2VEC,可以用作带有汇总的话语级表示,但这些模型通常很大。也有SSL技术可以学习话语级的表示。最成功的方法之一是一种对比方法,它需要负采样:选择替代样品与当前样品(锚)对比。但是,这并不确保所有负面样本属于与没有标签的锚类别不同的​​类别。本文应用了一种非对抗性的自我监督方法来学习话语级的嵌入。我们对没有标签(Dino)从计算机视觉到语音进行了调整,没有标签(Dino)。与对比方法不同,Dino不需要负抽样。我们将Dino与受到监督方式训练的X-Vector进行了比较。当转移到下游任务(说话者验证,语音情绪识别(SER)和阿尔茨海默氏病检测)时,Dino的表现优于X-Vector。我们研究了转移学习过程中几个方面的影响,例如将微调过程分为步骤,块长度或增强。在微调过程中,首先调整最后一个仿射层,然后整个网络一次超过微调。使用较短的块长度,尽管它们产生了更多不同的输入,但并不一定会提高性能,这意味着至少需要具有特定长度的语音段才能为每个应用程序提高性能。增强对SER有帮助。
translated by 谷歌翻译
考虑到大量未标记的语音数据和高标签成本,无监督的学习方法对于更好的系统开发至关重要。最成功的方法之一是对比度的自我监督方法,这些方法需要负采样:采样替代样品与当前样品(锚)对比。但是,很难确保所有负样本属于与没有标签的锚类别不同的​​类别。本文在未标记的语音语料库上应用了一种非对抗性的自我监督学习方法来学习话语级的嵌入。我们使用没有标签的蒸馏(Dino),在计算机视觉中提出,并将其改编为语音域。与对比度方法不同,Dino不需要负采样。这些嵌入是根据说话者验证和情感识别评估的。在说话者验证中,无监督的恐龙与余弦评分嵌入了voxceleb1测试试验中的4.38%EER。这表现优于最佳的对比度自我监督方法,而EER中的相对相对40%。不需要扬声器标签的迭代伪标记训练管道将EER进一步提高到1.89%。在情感识别中,Iemocap,Crema-D和MSP播客的Micro-F1得分分别进行了60.87、79.21和56.98%的恐龙。结果暗示着恐龙嵌入到不同语音应用中的普遍性。
translated by 谷歌翻译
受到计算机视觉的自我监督学习的最新进展的启发,在本文中,我们介绍了Delores,这是一种新的通用音频表示方法。我们的主要目标是使我们的网络学习在资源受限的设置(数据和计算)中,可以很好地跨越各种下游任务。受Barlow Twins目标功能的启发,我们建议学习对输入音频样本失真不变的嵌入,同时确保它们包含有关样本的非冗余信息。为此,我们测量了两个相同的网络的输出之间的互相关矩阵,该网络用从音频文件采样的音频段的变形版本中,使其尽可能接近身份矩阵。我们将大规模音频集数据集和FSD50K的一小部分组合用于自学学习,并且与最先进的算法相比,参数的一半不到一半。为了进行评估,我们将这些学习的表示形式转移到9个下游分类任务,包括语音,音乐和动物声音,并在不同的评估设置下显示竞争结果。除了简单明了,我们的预训练算法还可以通过其固有的构造本质来计算,并且不需要仔细的实施细节以避免琐碎或退化的解决方案。此外,我们对结果进行消融研究,并使我们的所有代码和预培训模型公开可用https://github.com/speech-lab-iitm/delores。
translated by 谷歌翻译
无监督的零射声语音转换(VC)旨在修改话语的扬声器特性,以匹配看不见的目标扬声器,而无需依赖并行培训数据。最近,已经显示了语音表示的自我监督学习在不使用转录物的情况下产生有用的语言单元,这可以直接传递给VC模型。在本文中,我们展示了通过使用长度重采样解码器来实现高质量的音频样本,这使得VC模型能够与不同的语言特征提取器和声码器一起工作,而无需它们以相同的序列长度运行。我们表明,我们的方法可以胜过VCTK数据集的许多基线。在不修改架构的情况下,我们进一步展示了a)使用来自同一扬声器的不同音频段,b)添加循环一致性损失,并且c)添加扬声器分类损失可以有助于学习更好的扬声器嵌入。我们的模型使用这些技术训练了Libritts,实现了最佳性能,产生了音频样本对目标扬声器的声音,同时保留了在字符错误率方面与实际人类话语相当的语言内容。
translated by 谷歌翻译
本文调查了视听扬声器表示的自我监督的预训练,其中显示了视觉流,显示说话者的口腔区域与语音一起用作输入。我们的研究重点是视听隐藏单元BERT(AV-HUBERT)方法,该方法是最近开发的通用音频语音训练前训练框架。我们进行了广泛的实验,以探测预训练和视觉方式的有效性。实验结果表明,AV-Hubert可以很好地概括与说话者相关的下游任务,从而使标签效率提高了大约10倍的仅10倍,仅音频和视听扬声器验证。我们还表明,结合视觉信息,甚至仅仅是唇部区域,都大大提高了性能和噪声稳健性,在清洁条件下将EER降低了38%,在嘈杂的条件下将EER降低了75%。
translated by 谷歌翻译
在这份技术报告中,我们描述了Voxceleb演讲者识别挑战2022(VOXSRC-22)的Royalflush提交。我们的提交内容包含曲目1,该曲目1用于监督的说话者验证和曲目3,该曲目适用于半监督者验证。对于轨道1,我们开发了具有对称体系结构的功能强大的基于U-NET的扬声器嵌入提取器。拟议的系统在验证集上获得了EER的2.06%,在MindCF中获得了0.1293。与最先进的ECAPA-TDNN相比,它在EER中获得了20.7%的相对提高,而MindCF的相对提高了22.70%。对于轨道3,我们采用了源域监督和目标域自学的联合培训,以获取扬声器嵌入提取器。随后的聚类过程可以获得目标域伪扬声器标签。我们使用所有源和目标域数据以有监督的方式适应说话者嵌入提取器,从而可以充分利用这两个域信息。此外,可以重复聚类和监督域的适应性,直到验证集对性能收敛为止。我们的最终提交是融合了10种型号,并在验证集上实现了7.75%EER和0.3517 MindCF。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
In this paper, we use data augmentation to improve performance of deep neural network (DNN) embeddings for speaker recognition. The DNN, which is trained to discriminate between speakers, maps variable-length utterances to fixed-dimensional embeddings that we call x-vectors. Prior studies have found that embeddings leverage large-scale training datasets better than i-vectors. However, it can be challenging to collect substantial quantities of labeled data for training. We use data augmentation, consisting of added noise and reverberation, as an inexpensive method to multiply the amount of training data and improve robustness. The x-vectors are compared with i-vector baselines on Speakers in the Wild and NIST SRE 2016 Cantonese. We find that while augmentation is beneficial in the PLDA classifier, it is not helpful in the i-vector extractor. However, the x-vector DNN effectively exploits data augmentation, due to its supervised training. As a result, the x-vectors achieve superior performance on the evaluation datasets.
translated by 谷歌翻译
我们介绍BERTPHONE,一个在大型语音上培训的变压器编码器,输出可以用于扬声器和语言识别的语音感知的上下文表示向量。这是通过对两个目标的培训来实现的:首先是通过调整伯特对连续领域的启发,涉及掩蔽输入框架的跨度并重建用于声学表示学习的整个序列;其次,由ASR的瓶颈特征成功的启发是应用于音素标签的序列级CTC损失,用于语音表示学习。我们预留了两种BERTPHONE型号(一个在FISHER上,一个在TED-lium上),并用它们用作两个任务的X-Vector-Sique DNN中的特征提取器。我们达到最先进的$ C _ {\ TEXT {AVG}} $ 6.16就具有挑战性的LRE07 3SEC封闭式语言识别任务。在Fisher和VoxceleB扬声器识别任务上,我们在培训BertPhone向量而不是MFCC时,我们看到扬声器EER的相对减少18%。通常,BERTPHONE在同一数据上优于先前的语音预制方法。我们在https://github.com/awslabs/speech -representations释放我们的代码和模型。
translated by 谷歌翻译
Through solving pretext tasks, self-supervised learning leverages unlabeled data to extract useful latent representations replacing traditional input features in the downstream task. In audio/speech signal processing, a wide range of features where engineered through decades of research efforts. As it turns out, learning to predict such features (a.k.a pseudo-labels) has proven to be a particularly relevant pretext task, leading to useful self-supervised representations which prove to be effective for downstream tasks. However, methods and common practices for combining such pretext tasks for better performance on the downstream task have not been explored and understood properly. In fact, the process relies almost exclusively on a computationally heavy experimental procedure, which becomes intractable with the increase of the number of pretext tasks. This paper introduces a method to select a group of pretext tasks among a set of candidates. The method we propose estimates calibrated weights for the partial losses corresponding to the considered pretext tasks during the self-supervised training process. The experiments conducted on automatic speech recognition, speaker and emotion recognition validate our approach, as the groups selected and weighted with our method perform better than classic baselines, thus facilitating the selection and combination of relevant pseudo-labels for self-supervised representation learning.
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
自我监督学习(SSL)是一个新的范式,用于学习判别性表示没有标记的数据,并且与受监督的对手相比,已经达到了可比甚至最新的结果。对比度学习(CL)是SSL中最著名的方法之一,试图学习一般性的信息表示数据。 CL方法主要是针对仅使用单个传感器模态的计算机视觉和自然语言处理应用程序开发的。但是,大多数普遍的计算应用程序都从各种不同的传感器模式中利用数据。虽然现有的CL方法仅限于从一个或两个数据源学习,但我们提出了可可(Crockoa)(交叉模态对比度学习),这是一种自我监督的模型,该模型采用新颖的目标函数来通过计算多功能器数据来学习质量表示形式不同的数据方式,并最大程度地减少了无关实例之间的相似性。我们评估可可对八个最近引入最先进的自我监督模型的有效性,以及五个公共数据集中的两个受监督的基线。我们表明,可可与所有其他方法相比,可可的分类表现出色。同样,可可比其他可用标记数据的十分之一的基线(包括完全监督的模型)的标签高得多。
translated by 谷歌翻译
自从近年来,自我监督的方法已成为代表性学习的有前途的途径,因为它们减轻了对被标记的数据集的需求,这些数据集的需求稀缺又昂贵。对比方法是在音频域中自学的流行选择,通常通过强迫模型不变到输入的某些转换来提供学习信号。但是,这些方法需要采取诸如阴性采样或某种形式的正则化之类的措施,以防止模型在琐碎的溶液上崩溃。在这项工作中,我们建议使用均衡性作为一个自我判断信号,以从未标记的数据中学习音频节奏表示。我们得出一个简单的损耗函数,可防止网络在训练过程中崩溃,而无需任何形式的正则化或负抽样。我们的实验表明,可以通过仅依靠模棱两可的自学意义来学习有意义的速度估计表示,从而实现与几种基准上有监督的方法相当的性能。为了额外的好处,我们的方法仅需要适度的计算资源,因此,广泛的研究社区仍然可以使用。
translated by 谷歌翻译
由于监督学习模型的培训中的高成本和数据限制,自我监督学习(SSL)最近引起了很多关注。 SSL中的当前范式是利用输入空间的数据增强来创建相同图像的不同视图并训练模型以最大化相似图像之间的表示,并最大程度地减少它们的不同图像。尽管这种方法实现了最新的(SOTA),但仍会实现各种下游任务,但它仍然有机会调查潜在的空间扩展。本文提出了Trimix,这是SSL的一种新颖概念,该概念通过数据的线性插值生成虚拟嵌入,从而为模型提供了新的表示。我们的策略着重于训练模型,以从虚拟的嵌入中提取原始嵌入,从而更好地表示学习。此外,我们提出了一个自称术语,可以提高虚拟嵌入和实际嵌入之间的一致性。我们在八个基准数据集上验证了Trimix,这些数据集由天然和医学图像组成,提高了2.71%和0.41%,比两种数据类型的第二好的模型好。此外,我们的方法表现优于半监督学习中的当前方法,尤其是在低数据制度中。此外,我们的预训练模型显示出更好的传输到其他数据集。
translated by 谷歌翻译
学习时间序列表示只有未标记的数据或几个标签样本可用时,可能是一项具有挑战性的任务。最近,通过对比,通过对比的不同数据观点从未标记的数据中提取有用的表示形式方面,对对比的自我监督学习表现出了很大的改进。在这项工作中,我们通过时间和上下文对比(TS-TCC)提出了一个新颖的时间序列表示学习框架,该框架从未标记的数据中学习了具有对比性学习的无标记数据的表示。具体而言,我们建议时间序列特定的弱和强大的增强,并利用他们的观点在拟议的时间对比模块中学习稳健的时间关系,除了通过我们提出的上下文对比模块学习判别性表示。此外,我们对时间序列数据增强选择进行系统研究,这是对比度学习的关键部分。我们还将TS-TCC扩展到了半监督的学习设置,并提出了一种类感知的TS-TCC(CA-TCC),从可用的少数标​​记数据中受益,以进一步改善TS-TCC学到的表示。具体而言,我们利用TS-TCC生成的强大伪标签来实现班级感知的对比损失。广泛的实验表明,对我们提议的框架所学的功能的线性评估与完全监督的培训相当。此外,我们的框架在少数标记的数据和转移学习方案中显示出高效率。该代码可在\ url {https://github.com/emadeldeen24/ts-tcc}上公开获得。
translated by 谷歌翻译
使用超越欧几里德距离的神经网络,深入的Bregman分歧测量数据点的分歧,并且能够捕获分布的发散。在本文中,我们提出了深深的布利曼对视觉表现的对比学习的分歧,我们的目标是通过基于功能Bregman分歧培训额外的网络来提高自我监督学习中使用的对比损失。与完全基于单点之间的分歧的传统对比学学习方法相比,我们的框架可以捕获分布之间的发散,这提高了学习表示的质量。我们展示了传统的对比损失和我们提出的分歧损失优于基线的结合,并且最先前的自我监督和半监督学习的大多数方法在多个分类和对象检测任务和数据集中。此外,学习的陈述在转移到其他数据集和任务时概括了良好。源代码和我们的型号可用于补充,并将通过纸张释放。
translated by 谷歌翻译
这项工作介绍了开发单声扬声器特定(即个性化)语音增强模型的自我监督学习方法。尽管通才模型必须广泛地解决许多扬声器,但专业模型可以将其增强功能调整到特定说话者的声音上,并希望解决狭窄的问题。因此,除了降低计算复杂性外,专家还能够实现更佳的性能。但是,幼稚的个性化方法可能需要目标用户的干净语音,这是不方便的,例如由于记录条件不足。为此,我们将个性化作为零拍的任务,其中不使用目标扬声器的其他干净演讲来培训,或者不使用几次学习任务,在该任务中,目标是最大程度地减少清洁的持续时间用于转移学习的语音。在本文中,我们提出了自我监督的学习方法,以解决零和少量个性化任务的解决方案。所提出的方法旨在从未知的无标记数据(即,来自目标用户的内在嘈杂录音)中学习个性化的语音功能,而无需知道相应的清洁资源。我们的实验研究了三种不同的自我监督学习机制。结果表明,使用较少的模型参数以及来自目标用户的较少的清洁数据实现了零拍摄的模型,从而实现了数据效率和模型压缩目标。
translated by 谷歌翻译