联合学习是分布式机器学习领域中的一个新兴概念。这个概念使甘斯能够从保留隐私的同时从丰富的分布式培训数据中受益。但是,在非IID设置中,当前的联合GAN体系结构是不稳定的,努力学习独特的功能并容易崩溃。在本文中,我们提出了一种新型的体系结构多流体,以解决非IID数据集的低质量图像,模式崩溃和不稳定性的问题。我们的结果表明,与基线Flgan相比,多流通量是平均20多个客户的稳定且性能的四倍。
translated by 谷歌翻译
事实证明,生成的对抗网络是学习复杂且高维数据分布的强大工具,但是已证明诸如模式崩溃之类的问题使他们难以训练它们。当数据分散到联合学习设置中的几个客户端时,这是一个更困难的问题,因为诸如客户端漂移和非IID数据之类的问题使联盟的平均平均值很难收敛。在这项工作中,我们研究了如何在培训数据分散到客户上时如何学习数据分布的任务,无法共享。我们的目标是从集中进行此分配中进行采样,而数据永远不会离开客户。我们使用标准基准图像数据集显示,现有方法在这种设置中失败,当局部时期的局部数量变大时,会经历所谓的客户漂移。因此,我们提出了一种新型的方法,我们称为Effgan:微调联合gans的合奏。作为本地专家发电机的合奏,Effgan能够学习所有客户端的数据分布并减轻客户漂移。它能够用大量的本地时代进行训练,从而使其比以前的作品更有效。
translated by 谷歌翻译
隐私法规法(例如GDPR)将透明度和安全性作为数据处理算法的设计支柱。在这种情况下,联邦学习是保护隐私的分布式机器学习的最具影响力的框架之一,从而实现了许多自然语言处理和计算机视觉任务的惊人结果。一些联合学习框架采用差异隐私,以防止私人数据泄漏到未经授权的政党和恶意攻击者。但是,许多研究突出了标准联邦学习对中毒和推理的脆弱性,因此引起了人们对敏感数据潜在风险的担忧。为了解决此问题,我们提出了SGDE,这是一种生成数据交换协议,可改善跨索洛联合会中的用户安全性和机器学习性能。 SGDE的核心是共享具有强大差异隐私的数据生成器,保证了对私人数据培训的培训,而不是通信显式梯度信息。这些发电机合成了任意大量数据,这些数据保留了私人样品的独特特征,但有很大差异。我们展示了将SGDE纳入跨核心联合网络如何提高对联邦学习最有影响力的攻击的弹性。我们在图像和表格数据集上测试我们的方法,利用β变量自动编码器作为数据生成器,并突出了对非生成数据的本地和联合学习的公平性和绩效改进。
translated by 谷歌翻译
基于深度学习的图像合成技术已在医疗研究中应用,用于生成医学图像以支持开放研究。培训生成的对抗神经网络(GAN)通常需要大量的培训数据。联合学习(FL)提供了一种使用来自不同医疗机构的分布式数据培训中心模型的方法,同时在本地保留原始数据。但是,FL容易受到后门攻击的攻击,这是通过中毒训练数据的对抗性攻击,因为中央服务器无法直接访问原始数据。大多数后门攻击策略都集中在分类模型和集中域。在这项研究中,我们提出了一种通过在后门攻击分类模型中使用常用的数据中毒策略来治疗歧视者来攻击联邦GAN(FEDGAN)的方法。我们证明,添加一个小扳机,其大小少于原始图像尺寸的0.5%会破坏FL-GAN模型。根据拟议的攻击,我们提供了两种有效的防御策略:全球恶意检测和当地培训正规化。我们表明,将两种防御策略结合起来会产生强大的医疗形象。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
将知识蒸馏应用于个性化的跨筒仓联合学习,可以很好地减轻用户异质性的问题。然而,这种方法需要一个代理数据集,这很难在现实世界中获得。此外,基于参数平均的全球模型将导致用户隐私的泄漏。我们介绍了一个分布式的三位玩家GaN来实现客户之间的DataFree共蒸馏。该技术减轻了用户异质性问题,更好地保护用户隐私。我们证实,GaN产生的方法可以使联合蒸馏更有效和稳健,并且在获得全球知识的基础上,共蒸馏可以为各个客户达到良好的性能。我们对基准数据集的广泛实验证明了与最先进的方法的卓越的泛化性能。
translated by 谷歌翻译
Federated learning is a collaborative method that aims to preserve data privacy while creating AI models. Current approaches to federated learning tend to rely heavily on secure aggregation protocols to preserve data privacy. However, to some degree, such protocols assume that the entity orchestrating the federated learning process (i.e., the server) is not fully malicious or dishonest. We investigate vulnerabilities to secure aggregation that could arise if the server is fully malicious and attempts to obtain access to private, potentially sensitive data. Furthermore, we provide a method to further defend against such a malicious server, and demonstrate effectiveness against known attacks that reconstruct data in a federated learning setting.
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
联合学习(FL)旨在通过使客户能够在不共享其私有数据的情况下协作构建机器学习模型来保护数据隐私。然而,最近的作品表明FL容易受到基于梯度的数据恢复攻击。保存技术的品种已经利用,以进一步提升FL的隐私。尽管如此,它们的计算或通信昂贵(例如,同态加密)或遭受精密损失(例如,差异隐私)。在这项工作中,我们提出了\ textsc {fedcg},一个新颖的\下划线{fed} erated学习方法,它利用\下划线{c} onditional \下划线{g}良好的对手网络来实现高级隐私保护,同时仍然保持竞争模型表现。更具体地说,\ textsc {fedcg}将每个客户端的本地网络分解为私有提取器和公共分类器,并保留本地提取器保护隐私。而不是暴露作为隐私泄漏的罪魁祸首的提取器,而是将客户的生成器与服务器共享,以聚合旨在增强客户端网络性能的公共知识。广泛的实验表明,与基线FL方法相比,\ TextSc {FEDCG}可以实现竞争模型性能,数值隐私分析表明\ TextSC {FEDCG}具有高级别的隐私保存能力。
translated by 谷歌翻译
联合学习(FL)是一项广泛采用的分布式学习范例,在实践中,打算在利用所有参与者的整个数据集进行培训的同时保护用户的数据隐私。在FL中,多种型号在用户身上独立培训,集中聚合以在迭代过程中更新全局模型。虽然这种方法在保护隐私方面是优异的,但FL仍然遭受攻击或拜占庭故障等质量问题。最近的一些尝试已经解决了对FL的强大聚集技术的这种质量挑战。然而,最先进的(SOTA)强大的技术的有效性尚不清楚并缺乏全面的研究。因此,为了更好地了解这些SOTA流域的当前质量状态和挑战在存在攻击和故障的情况下,我们进行了大规模的实证研究,以研究SOTA FL的质量,从多个攻击角度,模拟故障(通过突变运算符)和聚合(防御)方法。特别是,我们对两个通用图像数据集和一个现实世界联邦医学图像数据集进行了研究。我们还系统地调查了攻击用户和独立和相同分布的(IID)因子,每个数据集的攻击/故障的分布对鲁棒性结果的影响。经过496个配置进行大规模分析后,我们发现每个用户的大多数突变者对最终模型具有可忽略不计的影响。此外,选择最强大的FL聚合器取决于攻击和数据集。最后,我们说明了可以实现几乎在所有攻击和配置上的任何单个聚合器以及具有简单集合模型的所有攻击和配置的常用解决方案的通用解决方案。
translated by 谷歌翻译
我们调查分裂学习的安全 - 一种新颖的协作机器学习框架,通过需要最小的资源消耗来实现峰值性能。在本文中,我们通过介绍客户私人培训集重建的一般攻击策略来揭示议定书的脆弱性并展示其固有的不安全。更突出地,我们表明恶意服务器可以积极地劫持分布式模型的学习过程,并将其纳入不安全状态,从而为客户端提供推动攻击。我们实施不同的攻击调整,并在各种数据集中测试它们以及现实的威胁方案。我们证明我们的攻击能够克服最近提出的防御技术,旨在提高分裂学习议定书的安全性。最后,我们还通过扩展以前设计的联合学习的攻击来说明协议对恶意客户的不安全性。要使我们的结果可重复,我们会在https://github.com/pasquini-dario/splitn_fsha提供的代码。
translated by 谷歌翻译
Federated学习(FL)最近已成为流行的隐私合作学习范式。但是,它遭受了客户之间非独立和相同分布的(非IID)数据的困扰。在本文中,我们提出了一个新颖的框架,称为合成数据辅助联合学习(SDA-FL),以通过共享合成数据来解决这一非IID挑战。具体而言,每个客户端都预测了本地生成对抗网络(GAN)以生成差异化私有合成数据,这些数据被上传到参数服务器(PS)以构建全局共享的合成数据集。为了为合成数据集生成自信的伪标签,我们还提出了PS执行的迭代伪标记机制。本地私人数据集和合成数据集与自信的伪标签的结合可导致客户之间的数据分布几乎相同,从而提高了本地模型之间的一致性并使全球聚合受益。广泛的实验证明,在监督和半监督的设置下,所提出的框架在几个基准数据集中的大幅度优于基线方法。
translated by 谷歌翻译
Federated Learning has emerged to cope with raising concerns about privacy breaches in using Machine or Deep Learning models. This new paradigm allows the leverage of deep learning models in a distributed manner, enhancing privacy preservation. However, the server's blindness to local datasets introduces its vulnerability to model poisoning attacks and data heterogeneity, tampering with the global model performance. Numerous works have proposed robust aggregation algorithms and defensive mechanisms, but the approaches are orthogonal to individual attacks or issues. FedCC, the proposed method, provides robust aggregation by comparing the Centered Kernel Alignment of Penultimate Layers Representations. The experiment results on FedCC demonstrate that it mitigates untargeted and targeted model poisoning or backdoor attacks while also being effective in non-Independently and Identically Distributed data environments. By applying FedCC against untargeted attacks, global model accuracy is recovered the most. Against targeted backdoor attacks, FedCC nullified attack confidence while preserving the test accuracy. Most of the experiment results outstand the baseline methods.
translated by 谷歌翻译
由于对个人数据隐私的不断增长和当地客户的迅速增长的数据量,Federated Learnated(FL)的动机已成为新的机器学习设置。 FL系统由中央参数服务器和多个本地客户端组成。它将数据保留在本地客户端,并通过共享本地学到的模型参数来学习集中式模型。不需要共享本地数据,并且可以很好地保护隐私。然而,由于它是模型而不是共享的原始数据,因此系统可以暴露于恶意客户端发起的中毒模型攻击。此外,由于服务器上没有本地客户端数据,因此确定恶意客户端是一项挑战。此外,仍然可以使用上载模型估算客户本地数据,从而导致隐私披露。在这项工作中,我们首先提出了一个基于模型更新的联合平均算法,以防御拜占庭式攻击,例如加性噪声攻击和弹药攻击。提出了单个客户模型初始化方法,以通过隐藏各个本地机器学习模型来提供进一步的隐私保护。在结合这两个方案时,隐私和安全性都可以有效地增强。当没有攻击时,提出的方案被证明在非IID数据分布下实验会收敛。在拜占庭式攻击下,提议的方案的表现要比基于经典模型的FedAvg算法要好得多。
translated by 谷歌翻译
最近出现的联邦学习(FL)是一个有吸引力的分布式学习框架,其中许多无线最终用户设备可以训练全局模型,数据仍然自动加载。与传统的机器学习框架相比,收集集中存储的用户数据,这为数据隐私带来了巨大的沟通负担和担忧,这种方法不仅可以保存网络带宽,还可以保护数据隐私。尽管前景有前景,但拜占庭袭击,传统分布式网络中的棘手威胁,也被发现对FL相当有效。在本文中,我们对佛罗里达州的抗议袭击进行了全面调查了捍卫拜占庭袭击的最先进战略。我们首先根据他们使用的技术为现有的防御解决方案提供分类法,然后是在整个板上的比较和讨论。然后,我们提出了一种新的拜占庭攻击方法,称为重量攻击,以击败这些防御计划,并进行实验以证明其威胁。结果表明,现有的防御解决方案虽然丰富,但仍远未完全保护FL。最后,我们表明体重攻击可能的可能对策,并突出了一些挑战和未来的研究方向,以减轻百灵鱼袭击杂志。
translated by 谷歌翻译
联合学习(FL)允许相互不信任的客户可以协作培训通用的机器学习模型,而无需共享其私人/专有培训数据。不幸的是,FL很容易受到恶意客户的中毒,他们旨在通过在FL培训过程中发送恶意模型更新来阻碍常见训练的模型的准确性。我们认为,对现有FL系统的中毒攻击成功的关键因素是客户可用的模型更新空间,使恶意客户可以通过解决优化问题来搜索最有毒的模型更新。为了解决这个问题,我们提出了联合排名学习(FRL)。 FRL将标准FL中的模型参数更新(浮点数连续空间)从模型参数更新(一个连续的空间)缩小到参数排名的空间(整数值的离散空间)。为了能够使用参数等级(而不是参数权重)训练全球模型,FRL利用了最近的SuperMasks培训机制的想法。具体而言,FRL客户端根据其本地培训数据对随机初始化的神经网络(由服务器提供)的参数进行排名。 FRL Server使用投票机制来汇总客户在每个培训时期提交的参数排名,以生成下一个培训时期的全球排名。从直觉上讲,我们基于投票的聚合机制阻止中毒客户对全球模型进行重大的对抗性修改,因为每个客户都会进行一次投票!我们通过分析证明和实验证明了FRL对中毒的鲁棒性。我们还显示了FRL的高沟通效率。我们的实验证明了FRL在现实世界中的优势。
translated by 谷歌翻译
更广泛的覆盖范围和更好的解决方案延迟减少5G需要其与多访问边缘计算(MEC)技术的组合。分散的深度学习(DDL),如联邦学习和群体学习作为对数百万智能边缘设备的隐私保留数据处理的有希望的解决方案,利用了本地客户端网络内的多层神经网络的分布式计算,而无需披露原始本地培训数据。值得注意的是,在金融和医疗保健等行业中,谨慎维护交易和个人医疗记录的敏感数据,DDL可以促进这些研究所的合作,以改善培训模型的性能,同时保护参与客户的数据隐私。在本调查论文中,我们展示了DDL的技术基础,通过分散的学习使社会许多人走。此外,我们通过概述DDL的挑战以及从新颖的沟通效率和可靠性的观点来概述目前本领域最先进的全面概述。
translated by 谷歌翻译
联合学习是一种数据解散隐私化技术,用于以安全的方式执行机器或深度学习。在本文中,我们介绍了有关联合学习的理论方面客户次数有所不同的用例。具体而言,使用从开放数据存储库中获得的胸部X射线图像提出了医学图像分析的用例。除了与隐私相关的优势外,还将研究预测的改进(就曲线下的准确性和面积而言)和减少执行时间(集中式方法)。将从培训数据中模拟不同的客户,以不平衡的方式选择,即,他们并非都有相同数量的数据。考虑三个或十个客户之间的结果与集中案件相比。间歇性客户将分析两种遵循方法,就像在实际情况下,某些客户可能会离开培训,一些新的新方法可能会进入培训。根据准确性,曲线下的区域和执行时间的结果,结果的结果的演变显示为原始数据被划分的客户次数。最后,提出了该领域的改进和未来工作。
translated by 谷歌翻译
联邦学习(FL)和分裂学习(SL)是两个流行的分布式机器学习方法。遵循模型到数据方案;客户培训和测试机器学习模型而不共享原始数据。由于客户端和服务器之间的机器学习模型架构,SL提供比FL更好的模型隐私。此外,分割模型使SL成为资源受限环境的更好选择。然而,由于基于中继的训练,SL表现在多个客户端的继电器训练引起的速度。在这方面,本文提出了一种名为Splitfed Learning(SFL)的新方法,该方法可分摊两种方法消除其固有缺点,以及包含差异隐私和PIXELD的精制架构配置,以增强数据隐私和模型鲁棒性。我们的分析和经验结果表明,(纯)SFL提供了类似的测试精度和通信效率,作为SL,同时每个全球时代显着降低其用于多个客户端的SL中的计算时间。此外,如SL在SL中,它的通信效率随着客户的数量而改善。此外,在扩展实验环境下进一步评估了具有隐私和鲁棒性度量的SFL的性能。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译