单细胞RNA-seq数据集的大小和复杂性正在增长,从而可以研究各种生物/临床环境中的细胞组成变化。可扩展的降低性降低技术需要消除它们的生物学变异,同时考虑技术和生物混杂因素。在这项工作中,我们扩展了一种流行的概率非线性维度降低的方法,即高斯过程潜在变量模型,以扩展到大量的单细胞数据集,同时明确考虑技术和生物混杂因素。关键思想是使用增强的内核,该内核可以保留下限的可分式性,从而允许快速随机变化推断。我们证明了其在Kumasaka等人中重建先天免疫的潜在潜在签名的能力。 (2021)训练时间较低9倍。我们进一步分析了一个共同数据集并在130个人群中证明了该框架,该框架可以在捕获可解释的感染签名的同时进行数据集成。具体而言,我们探讨了互联的严重程度,作为优化患者分层并捕获疾病特异性基因表达的潜在维度。
translated by 谷歌翻译
We introduce stochastic variational inference for Gaussian process models. This enables the application of Gaussian process (GP) models to data sets containing millions of data points. We show how GPs can be variationally decomposed to depend on a set of globally relevant inducing variables which factorize the model in the necessary manner to perform variational inference. Our approach is readily extended to models with non-Gaussian likelihoods and latent variable models based around Gaussian processes. We demonstrate the approach on a simple toy problem and two real world data sets.
translated by 谷歌翻译
基于高斯工艺(GP)建立的解码器由于非线性函数空间的边缘化而诱人。这样的模型(也称为GP-LVM)通常很昂贵且众所周知,在实践中训练,但可以使用变异推理和诱导点来缩放。在本文中,我们重新访问主动集近似值。我们基于最近发现的交叉验证链接来开发对数 - 边界可能性的新随机估计,并提出了其计算有效近似。我们证明,所得的随机活动集(SAS)近似显着提高了GP解码器训练的鲁棒性,同时降低了计算成本。SAS-GP在潜在空间中获得更多的结构,比例为许多数据点,并且比变异自动编码器更好地表示表示,这对于GP解码器来说很少是这种情况。
translated by 谷歌翻译
Latent variable models such as the Variational Auto-Encoder (VAE) have become a go-to tool for analyzing biological data, especially in the field of single-cell genomics. One remaining challenge is the interpretability of latent variables as biological processes that define a cell's identity. Outside of biological applications, this problem is commonly referred to as learning disentangled representations. Although several disentanglement-promoting variants of the VAE were introduced, and applied to single-cell genomics data, this task has been shown to be infeasible from independent and identically distributed measurements, without additional structure. Instead, recent methods propose to leverage non-stationary data, as well as the sparse mechanism shift assumption in order to learn disentangled representations with a causal semantic. Here, we extend the application of these methodological advances to the analysis of single-cell genomics data with genetic or chemical perturbations. More precisely, we propose a deep generative model of single-cell gene expression data for which each perturbation is treated as a stochastic intervention targeting an unknown, but sparse, subset of latent variables. We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization. Finally, we apply those approaches to two real-world large-scale gene perturbation data sets and find that models that exploit the sparse mechanism shift hypothesis surpass contemporary methods on a transfer learning task. We implement our new model and benchmarks using the scvi-tools library, and release it as open-source software at \url{https://github.com/Genentech/sVAE}.
translated by 谷歌翻译
The kernel function and its hyperparameters are the central model selection choice in a Gaussian proces (Rasmussen and Williams, 2006). Typically, the hyperparameters of the kernel are chosen by maximising the marginal likelihood, an approach known as Type-II maximum likelihood (ML-II). However, ML-II does not account for hyperparameter uncertainty, and it is well-known that this can lead to severely biased estimates and an underestimation of predictive uncertainty. While there are several works which employ a fully Bayesian characterisation of GPs, relatively few propose such approaches for the sparse GPs paradigm. In this work we propose an algorithm for sparse Gaussian process regression which leverages MCMC to sample from the hyperparameter posterior within the variational inducing point framework of Titsias (2009). This work is closely related to Hensman et al. (2015b) but side-steps the need to sample the inducing points, thereby significantly improving sampling efficiency in the Gaussian likelihood case. We compare this scheme against natural baselines in literature along with stochastic variational GPs (SVGPs) along with an extensive computational analysis.
translated by 谷歌翻译
最近,疾病控制和预防中心(CDC)与其他联邦机构合作,以鉴定冠心病疾病2019年(Covid-19)发病率(热点)的县,并为当地卫生部门提供支持,以限制疾病的传播。了解热点事件的时空动态非常重视支持政策决策并防止大规模爆发。本文提出了一种时空贝叶斯框架,用于早期检测美国Covid-19热点(在县级)。我们假设观察到的病例和热点都依赖于一类潜随机变量,其编码Covid-19传输的底层时空动态。这种潜在的变量遵循零均值高斯过程,其协方差由非静止内核功能指定。我们内核功能的最突出的特征是引入深度神经网络,以增强模型的代表性,同时仍然享有内核的可解释性。我们得出了一种稀疏的模型,并使用变分的学习策略适合模型,以规避大数据集的计算诡计。与其他基线方法相比,我们的模型展示了更好的解释性和优越的热点检测性能。
translated by 谷歌翻译
Sparse Gaussian process methods that use inducing variables require the selection of the inducing inputs and the kernel hyperparameters. We introduce a variational formulation for sparse approximations that jointly infers the inducing inputs and the kernel hyperparameters by maximizing a lower bound of the true log marginal likelihood. The key property of this formulation is that the inducing inputs are defined to be variational parameters which are selected by minimizing the Kullback-Leibler divergence between the variational distribution and the exact posterior distribution over the latent function values. We apply this technique to regression and we compare it with other approaches in the literature.
translated by 谷歌翻译
随机效果模型是由于基因组基因表达数据中隐藏的混淆而检测和校正虚假样本相关性的流行统计模型。在某些混淆因素所知的应用中,同时估计随机效应模型中已知和潜断分量的贡献是迄今为止依赖于基于数值梯度的优化器来最大化似然函数的挑战。这是不令人满意的,因为所得的解决方案表征不佳,并且该方法的效率可能是次优。在这里,我们在分析上证明了最大似然潜变量总是被选择与已知的混杂因子正交,换句话说,最大似然潜变量解释尚未通过已知因素解释的样本COVARIRCE。基于这一结果,我们提出了一种限制的最大似然方法,其通过最大化与已知的混淆因子正交的限制子空间上的可能性来估计潜变变量,并表明这减少了该子空间上的概率PCA。然后,该方法通过在给定潜在变量的似然函数中最大化剩余的术语来估计方差协方差参数,使用新派生的分析解决问题。与基于梯度的优化器相比,我们的方法可以使用标准矩阵操作来计算更大或更平等的似然值,导致不与任何已知因素重叠的潜在因子,并且运行时的运行时间减少了几个数量级。因此,受限制的最大似然方法有助于应用随机效应建模策略来学习潜伏方差分量,以利用当前方法比较大的基因表达数据集。
translated by 谷歌翻译
In this paper we introduce deep Gaussian process (GP) models. Deep GPs are a deep belief network based on Gaussian process mappings. The data is modeled as the output of a multivariate GP. The inputs to that Gaussian process are then governed by another GP. A single layer model is equivalent to a standard GP or the GP latent variable model (GP-LVM). We perform inference in the model by approximate variational marginalization. This results in a strict lower bound on the marginal likelihood of the model which we use for model selection (number of layers and nodes per layer). Deep belief networks are typically applied to relatively large data sets using stochastic gradient descent for optimization. Our fully Bayesian treatment allows for the application of deep models even when data is scarce. Model selection by our variational bound shows that a five layer hierarchy is justified even when modelling a digit data set containing only 150 examples.
translated by 谷歌翻译
本文介绍了一种新型的因果结构,即多尺度非平稳的定向无环图(MN-DAG),该图将DAG概括为时频域。我们的贡献是双重的。首先,通过利用光谱和因果关系的结果,我们揭露了一种新型的概率生成模型,该模型允许根据用户指定的先验对因果图的时间依赖性和多尺度属性进行采样。其次,我们通过随机变异推理(SVI)(称为多阶层非稳态的因果结构学习者(MN-Castle))设计了一种用于估计Mn-DAGS的贝叶斯方法。除了直接观察外,MN-Castle还通过不同时间分辨率的时间序列的总功率谱分解来利用信息。在我们的实验中,我们首先使用所提出的模型根据潜在的MN-DAG生成合成数据,这表明数据生成的数据再现了不同域中时间序列的众所周知的特征。然后,我们将学习方法的MN媒体与基线模型进行比较,该模型在使用不同的多尺度和非平稳设置生成的合成数据上进行了比较,从而证实了MN-Castle的良好性能。最后,我们展示了一些从MN-Castle的应用中得出的一些见解,以研究COVID-19期间7个全球股票市场的因果结构。
translated by 谷歌翻译
高斯过程(GP),其结合了分类和连续输入变量模型已发现使用例如在纵向数据分析和计算机实验。然而,对于这些模型标准推理具有典型的立方缩放,并且不能应用于GPS共可扩展近似方案自协方差函数是不连续的。在这项工作中,我们导出用于混合域协方差函数,其中对于观察和基函数总数的数量成线性比例的基础函数近似方案。所提出的方法自然是适用于GP贝叶斯回归任意观测模型。我们证明在纵向数据建模上下文和显示的方法,它精确地近似于确切GP模型,只需要一个比较拟合对应精确模型运行时间的几分之一。
translated by 谷歌翻译
高斯进程(GPS)是通过工程学的社会和自然科学的应用程序学习和统计数据的重要工具。它们构成具有良好校准的不确定性估计的强大的内核非参数方法,然而,由于其立方计算复杂度,从货架上的GP推理程序仅限于具有数千个数据点的数据集。因此,在过去几年中已经开发出许多稀疏的GPS技术。在本文中,我们专注于GP回归任务,并提出了一种基于来自几个本地和相关专家的聚合预测的新方法。因此,专家之间的相关程度可以在独立于完全相关的专家之间变化。考虑到他们的相关性导致了一致的不确定性估算,汇总了专家的个人预测。我们的方法在限制案件中恢复了专家的独立产品,稀疏GP和全GP。呈现的框架可以处理一般的内核函数和多个变量,并且具有时间和空间复杂性,在专家和数据样本的数量中是线性的,这使得我们的方法是高度可扩展的。我们展示了我们提出的方法的卓越性能,这是我们提出的综合性和几个实际数据集的最先进的GP近似方法的卓越性能,以及具有确定性和随机优化的若干现实世界数据集。
translated by 谷歌翻译
与高斯过程(GPS)的变异近似通常使用一组诱导点来形成与协方差矩阵的低级别近似值。在这项工作中,我们相反利用了精度矩阵的稀疏近似。我们提出了差异最近的邻居高斯工艺(VNNGP),该过程引入了先验,该过程仅保留在k最近的邻居观测中的相关性,从而诱导稀疏精度结构。使用变分框架,可以将VNNGP的目标分解在观测值和诱导点上,从而以O($ k^3 $)的时间复杂性实现随机优化。因此,我们可以任意扩展诱导点大小,甚至可以在每个观察到的位置放置诱导点。我们通过各种实验将VNNGP与其他可扩展的GP进行比较,并证明VNNGP(1)可以极大地超过低级别方法,而(2)比其他最近的邻居方法较不适合过度拟合。
translated by 谷歌翻译
本文开发了一个贝叶斯图形模型,用于融合不同类型的计数数据。激励的应用是从不同治疗方法收集的各种高维特征的细菌群落研究。在这样的数据集中,社区之间没有明确的对应关系,每个对应都与不同的因素相对应,从而使数据融合具有挑战性。我们引入了一种灵活的多项式高斯生成模型,用于共同建模此类计数数据。该潜在变量模型通过共同的多元高斯潜在空间共同表征了观察到的数据,该空间参数化了转录组计数的多项式概率集。潜在变量的协方差矩阵诱导所有转录本之间共同依赖性的协方差矩阵,有效地融合了多个数据源。我们提出了一种可扩展的可扩展性变异期望最大化(EM)算法,用于推断模型的潜在变量和参数。推断的潜在变量为可视化数据提供了常见的维度降低,而推断的参数则提供了预测性的后验分布。除了证明变异性程序的模拟研究外,我们还将模型应用于细菌微生物组数据集。
translated by 谷歌翻译
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.
translated by 谷歌翻译
Real engineering and scientific applications often involve one or more qualitative inputs. Standard Gaussian processes (GPs), however, cannot directly accommodate qualitative inputs. The recently introduced latent variable Gaussian process (LVGP) overcomes this issue by first mapping each qualitative factor to underlying latent variables (LVs), and then uses any standard GP covariance function over these LVs. The LVs are estimated similarly to the other GP hyperparameters through maximum likelihood estimation, and then plugged into the prediction expressions. However, this plug-in approach will not account for uncertainty in estimation of the LVs, which can be significant especially with limited training data. In this work, we develop a fully Bayesian approach for the LVGP model and for visualizing the effects of the qualitative inputs via their LVs. We also develop approximations for scaling up LVGPs and fully Bayesian inference for the LVGP hyperparameters. We conduct numerical studies comparing plug-in inference against fully Bayesian inference over a few engineering models and material design applications. In contrast to previous studies on standard GP modeling that have largely concluded that a fully Bayesian treatment offers limited improvements, our results show that for LVGP modeling it offers significant improvements in prediction accuracy and uncertainty quantification over the plug-in approach.
translated by 谷歌翻译
贝叶斯神经网络和深度集合代表了深入学习中不确定性量化的两种现代范式。然而,这些方法主要因内存低效率问题而争取,因为它们需要比其确定性对应物高出几倍的参数储存。为了解决这个问题,我们使用少量诱导重量增强每层的重量矩阵,从而将不确定性定量突出到这种低尺寸空间中。我们进一步扩展了Matheron的有条件高斯采样规则,以实现快速的重量采样,这使得我们的推理方法能够与合并相比保持合理的运行时间。重要的是,我们的方法在具有完全连接的神经网络和RESNET的预测和不确定性估算任务中实现了竞争性能,同时将参数大小减少到$单辆$ \ LEQ 24.3 \%$的参数大小神经网络。
translated by 谷歌翻译
高斯过程(GP)回归是一种灵活的,非参数回归的方法,自然量化不确定性。在许多应用中,响应和协变量的数量均大,目标是选择与响应相关的协变量。在这种情况下,我们提出了一种新颖的可扩展算法,即创建的VGPR,该算法基于Vecchia GP近似,优化了受惩罚的GP log-logikelihiens,这是空间统计的有序条件近似,这意味着精确矩阵的稀疏cholesky因子。我们将正则路径从强度惩罚到弱惩罚,依次添加基于对数似然梯度的候选协变量,并通过新的二次约束坐标下降算法取消了无关的协变量。我们提出了基于Vecchia的迷你批次亚采样,该子采样提供了无偏的梯度估计器。最终的过程可扩展到数百万个响应和数千个协变量。理论分析和数值研究表明,相对于现有方法,可伸缩性和准确性的提高。
translated by 谷歌翻译
计算生物学中的一个关键问题是发现基因表达变化,该基因表达会调节细胞命运跃迁,其中一种细胞类型变成另一种细胞类型。但是,每个单独的单个细胞都不能纵向跟踪,并且在同一时间内实时的单元可能处于过渡过程的不同阶段。这可以看作是从未知时代的观察结果中学习动态系统行为的问题。此外,单个祖细胞类型通常会分叉成多种儿童细胞类型,从而使模拟动力学的问题变得复杂。为了解决这个问题,我们开发了一种称为普通微分方程的变分混合物的方法。通过使用基因表达生物化学告知的简单odes家族来限制深层生成模型的可能性,我们可以同时推断每个细胞的潜在时间和潜在状态并预测其未来的基因表达状态。该模型可以解释为ODE的混合物,其参数在细胞状态的潜在空间中连续变化。与以前的方法相比,我们的方法极大地改善了单细胞基因表达数据的数据拟合,潜在时间推断和未来的细胞状态估计。
translated by 谷歌翻译
高斯流程(GPS)实际应用的主要挑战是选择适当的协方差函数。 GPS的移动平均值或过程卷积的构建可以提供一些额外的灵活性,但仍需要选择合适的平滑核,这是非平凡的。以前的方法通过在平滑内核上使用GP先验,并通过扩展协方差来构建协方差函数,以绕过预先指定它的需求。但是,这样的模型在几种方面受到限制:它们仅限于单维输入,例如时间;它们仅允许对单个输出进行建模,并且由于推理并不简单,因此不会扩展到大型数据集。在本文中,我们引入了GPS的非参数过程卷积公式,该公式通过使用基于Matheron规则的功能采样方法来减轻这些弱点,以使用诱导变量的间域间采样进行快速采样。此外,我们提出了这些非参数卷积的组成,可作为经典深度GP模型的替代方案,并允许从数据中推断中间层的协方差函数。我们测试了单个输出GP,多个输出GPS和DEEP GPS在基准测试上的模型性能,并发现在许多情况下,我们的方法可以提供比标准GP模型的改进。
translated by 谷歌翻译