我们建议基于张量CP分解模拟矩阵时间序列。而不是使用作为估计CP分解的标准做法的迭代算法,我们提出了一种基于由底层过程的串行依赖结构构成的广义特征分析的新的和单遍估计过程。新程序的一个关键思想是将在具有全排序矩阵的秩减少矩阵方面将概要的矩阵预定为下方,以避免以前的前者的复杂性可以为零,有限和无限。在没有实践性的情况下,在一般环境下建立了渐近理论。例如,图2示出了CP - 分解中的所有组件系数矢量,根据时间序列尺寸与样本大小之间的相对大小一致地估计CP分解中的所有组件系数矢量。建议的模型和估计方法进一步用模拟和真实数据说明;显示有效维度降低模型和预测矩阵时间序列。
translated by 谷歌翻译
本文开发了一个通用框架,用于通过核规范正则化估计高维条件因子模型。我们建立了估计器的较大样本属性,并提供了用于查找估计器的有效计算算法以及选择正则化参数的交叉验证程序。一般框架使我们能够以统一的方式估算各种条件因素模型,并迅速提供新的渐近结果。我们采用该方法来分析单个美国股票收益的横截面,并发现施加同质性可以改善模型的样本外可预测性。
translated by 谷歌翻译
作为一种特殊的无限级矢量自回旋(VAR)模型,矢量自回归移动平均值(VARMA)模型比广泛使用的有限级var模型可以捕获更丰富的时间模式。然而,长期以来,其实用性一直受到其不可识别性,计算疾病性和解释相对难度的阻碍。本文介绍了一种新颖的无限级VAR模型,该模型不仅避免了VARMA模型的缺点,而且继承了其有利的时间模式。作为另一个有吸引力的特征,可以单独解释该模型的时间和横截面依赖性结构,因为它们的特征是不同的参数集。对于高维时间序列,这种分离激发了我们对确定横截面依赖性的参数施加稀疏性。结果,可以在不牺牲任何时间信息的情况下实现更高的统计效率和可解释性。我们为提出的模型引入了一个$ \ ell_1 $调查估计量,并得出相应的非反应误差边界。开发了有效的块坐标下降算法和一致的模型顺序选择方法。拟议方法的优点得到了模拟研究和现实世界的宏观经济数据分析的支持。
translated by 谷歌翻译
我们考虑一个高维模型,其中观察到时间和空间的变量。该模型由包含时间滞后的时空回归和因变量的空间滞后组成。与古典空间自回归模型不同,我们不依赖于预定的空间交互矩阵,但从数据中推断所有空间交互。假设稀疏性,我们通过惩罚一组Yule-Walker方程来估计完全数据驱动的空间和时间依赖。这种正则化可以留下非结构化,但我们还提出了当观察结果源自空间网格(例如卫星图像)时定制的收缩程序。推导有限的样本误差界限,并且在渐近框架中建立估计一致性,其中样本大小和空间单元的数量共同偏离。外源性变量也可以包括在内。与竞争程序相比,仿真练习表现出强大的有限样本性能。作为一个实证应用,我们模型卫星测量了伦敦的No2浓度。我们的方法通过竞争力的基准提供预测,我们发现了强烈的空间互动的证据。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
In a high dimensional linear predictive regression where the number of potential predictors can be larger than the sample size, we consider using LASSO, a popular L1-penalized regression method, to estimate the sparse coefficients when many unit root regressors are present. Consistency of LASSO relies on two building blocks: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix of the regressors. In our setting where unit root regressors are driven by temporal dependent non-Gaussian innovations, we establish original probabilistic bounds for these two building blocks. The bounds imply that the rates of convergence of LASSO are different from those in the familiar cross sectional case. In practical applications given a mixture of stationary and nonstationary predictors, asymptotic guarantee of LASSO is preserved if all predictors are scale-standardized. In an empirical example of forecasting the unemployment rate with many macroeconomic time series, strong performance is delivered by LASSO when the initial specification is guided by macroeconomic domain expertise.
translated by 谷歌翻译
This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models-including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation-which exploits a certain tensor structure in their low-order observable moments (typically, of second-and third-order). Specifically, parameter estimation is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric tensor derived from the moments; this decomposition can be viewed as a natural generalization of the singular value decomposition for matrices. Although tensor decompositions are generally intractable to compute, the decomposition of these specially structured tensors can be efficiently obtained by a variety of approaches, including power iterations and maximization approaches (similar to the case of matrices). A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin's perturbation theorem for the singular vectors of matrices. This implies a robust and computationally tractable estimation approach for several popular latent variable models.
translated by 谷歌翻译
考虑一个面板数据设置,其中可获得对个人的重复观察。通常可以合理地假设存在共享观察特征的类似效果的个体组,但是分组通常提前未知。我们提出了一种新颖的方法来估计普通面板数据模型的这种未观察到的分组。我们的方法明确地估计各个参数估计中的不确定性,并且在每个人上具有大量的个体和/或重复测量的计算可行。即使在单个数据不可用的情况下,也可以应用开发的想法,并且仅向研究人员提供参数估计与某种量化的不确定性。
translated by 谷歌翻译
网络数据通常在各种应用程序中收集,代表感兴趣的功能之间直接测量或统计上推断的连接。在越来越多的域中,这些网络会随着时间的流逝而收集,例如不同日子或多个主题之间的社交媒体平台用户之间的交互,例如在大脑连接性的多主体研究中。在分析多个大型网络时,降低降低技术通常用于将网络嵌入更易于处理的低维空间中。为此,我们通过专门的张量分解来开发用于网络集合的主组件分析(PCA)的框架,我们将半对称性张量PCA或SS-TPCA术语。我们得出计算有效的算法来计算我们提出的SS-TPCA分解,并在标准的低级别信号加噪声模型下建立方法的统计效率。值得注意的是,我们表明SS-TPCA具有与经典矩阵PCA相同的估计精度,并且与网络中顶点数的平方根成正比,而不是预期的边缘数。我们的框架继承了古典PCA的许多优势,适用于广泛的无监督学习任务,包括识别主要网络,隔离有意义的更改点或外出观察,以及表征最不同边缘的“可变性网络”。最后,我们证明了我们的提案对模拟数据的有效性以及经验法律研究的示例。用于建立我们主要一致性结果的技术令人惊讶地简单明了,可能会在其他各种网络分析问题中找到使用。
translated by 谷歌翻译
本文研究了聚类基质值观测值的计算和统计限制。我们提出了一个低级别的混合模型(LRMM),该模型适用于经典的高斯混合模型(GMM)来处理基质值观测值,该观测值假设人口中心矩阵的低级别。通过集成Lloyd算法和低级近似值设计了一种计算有效的聚类方法。一旦定位良好,该算法将快速收敛并达到最小值最佳的指数型聚类错误率。同时,我们表明一种基于张量的光谱方法可提供良好的初始聚类。与GMM相当,最小值最佳聚类错误率是由分离强度(即种群中心矩阵之间的最小距离)决定的。通过利用低级度,提出的算法对分离强度的要求较弱。但是,与GMM不同,LRMM的统计难度和计算难度的特征是信号强度,即最小的人口中心矩阵的非零奇异值。提供了证据表明,即使信号强度不够强,即使分离强度很强,也没有多项式时间算法是一致的。在高斯以下噪声下进一步证明了我们低级劳埃德算法的性能。讨论了LRMM下估计和聚类之间的有趣差异。通过全面的仿真实验证实了低级劳埃德算法的优点。最后,我们的方法在现实世界数据集的文献中优于其他方法。
translated by 谷歌翻译
我们介绍和分析了多元奇异频谱分析(MSSA)的变体,这是一种流行的时间序列方法,用于启用和预测多元时间序列。在我们介绍的时空因素模型下,给定$ n $时间序列和$ t $观测时间序列,我们为插补和样本外预测均有效地扩展为$ 1 / \ sqrt,为预测和样本预测有效地缩放均值{\ min(n,t)t} $。这是一个改进:(i)$ 1 /\ sqrt {t} $ SSA的错误缩放,MSSA限制对单变量时间序列; (ii)$ 1/\ min(n,t)$对于不利用数据中时间结构的矩阵估计方法的错误缩放。我们引入的时空模型包括:谐波,多项式,可区分的周期函数和持有人连续函数的任何有限总和和产物。在时空因素模型下,我们的样本外预测结果可能对在线学习具有独立的兴趣。从经验上讲,在基准数据集上,我们的MSSA变体通过最先进的神经网络时间序列方法(例如,DEEPAR,LSTM)竞争性能,并且明显优于诸如矢量自动化(VAR)之类的经典方法。最后,我们提出了MSSA的扩展:(i)估计时间序列的时变差异的变体; (ii)一种张量变体,对于$ n $和$ t $的某些制度具有更好的样本复杂性。
translated by 谷歌翻译
假设$ g $是根据所谓的HyperGraph随机块模型(HSBM)产生的,我们考虑了稀疏$ Q $均匀的HyperGraph $ G $中的社区检测问题。我们证明,基于非折线操作员的光谱方法具有很高的概率,可以降低到Angelini等人猜想的广义kesten-Stigum检测阈值。我们表征了稀疏HSBM的非背带操作员的频谱,并使用Ihara-Bass公式为超图提供有效的尺寸降低程序。结果,可以将稀疏HSBM的社区检测减少为$ 2N \ times 2n $非正态矩阵的特征向量问题,该矩阵从邻接矩阵和超级格雷普的学位矩阵中构建。据我们所知,这是第一种可证明,有效的光谱算法,它可以根据一般对称概率张量生成$ K $块的HSBMS阈值。
translated by 谷歌翻译
Sparse reduced rank regression is an essential statistical learning method. In the contemporary literature, estimation is typically formulated as a nonconvex optimization that often yields to a local optimum in numerical computation. Yet, their theoretical analysis is always centered on the global optimum, resulting in a discrepancy between the statistical guarantee and the numerical computation. In this research, we offer a new algorithm to address the problem and establish an almost optimal rate for the algorithmic solution. We also demonstrate that the algorithm achieves the estimation with a polynomial number of iterations. In addition, we present a generalized information criterion to simultaneously ensure the consistency of support set recovery and rank estimation. Under the proposed criterion, we show that our algorithm can achieve the oracle reduced rank estimation with a significant probability. The numerical studies and an application in the ovarian cancer genetic data demonstrate the effectiveness and scalability of our approach.
translated by 谷歌翻译
离线政策评估(OPE)被认为是强化学习(RL)的基本且具有挑战性的问题。本文重点介绍了基于从无限 - 马尔可夫决策过程的框架下从可能不同策略生成的预收集的数据的目标策略的价值估计。由RL最近开发的边际重要性采样方法和因果推理中的协变量平衡思想的动机,我们提出了一个新颖的估计器,具有大约投影的国家行动平衡权重,以进行策略价值估计。我们获得了这些权重的收敛速率,并表明拟议的值估计量在技术条件下是半参数有效的。就渐近学而言,我们的结果比例均以每个轨迹的轨迹数量和决策点的数量进行扩展。因此,当决策点数量分歧时,仍然可以使用有限的受试者实现一致性。此外,我们开发了一个必要且充分的条件,以建立贝尔曼操作员在政策环境中的适当性,这表征了OPE的困难,并且可能具有独立的利益。数值实验证明了我们提出的估计量的有希望的性能。
translated by 谷歌翻译
Higher-order multiway data is ubiquitous in machine learning and statistics and often exhibits community-like structures, where each component (node) along each different mode has a community membership associated with it. In this paper we propose the tensor mixed-membership blockmodel, a generalization of the tensor blockmodel positing that memberships need not be discrete, but instead are convex combinations of latent communities. We establish the identifiability of our model and propose a computationally efficient estimation procedure based on the higher-order orthogonal iteration algorithm (HOOI) for tensor SVD composed with a simplex corner-finding algorithm. We then demonstrate the consistency of our estimation procedure by providing a per-node error bound, which showcases the effect of higher-order structures on estimation accuracy. To prove our consistency result, we develop the $\ell_{2,\infty}$ tensor perturbation bound for HOOI under independent, possibly heteroskedastic, subgaussian noise that may be of independent interest. Our analysis uses a novel leave-one-out construction for the iterates, and our bounds depend only on spectral properties of the underlying low-rank tensor under nearly optimal signal-to-noise ratio conditions such that tensor SVD is computationally feasible. Whereas other leave-one-out analyses typically focus on sequences constructed by analyzing the output of a given algorithm with a small part of the noise removed, our leave-one-out analysis constructions use both the previous iterates and the additional tensor structure to eliminate a potential additional source of error. Finally, we apply our methodology to real and simulated data, including applications to two flight datasets and a trade network dataset, demonstrating some effects not identifiable from the model with discrete community memberships.
translated by 谷歌翻译
现代高维方法经常采用“休稀稀物”的原则,而在监督多元学习统计学中可能面临着大量非零系数的“密集”问题。本文提出了一种新的聚类减少秩(CRL)框架,其施加了两个联合矩阵规范化,以自动分组构建预测因素的特征。 CRL比低级别建模更具可解释,并放松变量选择中的严格稀疏假设。在本文中,提出了新的信息 - 理论限制,揭示了寻求集群的内在成本,以及多元学习中的维度的祝福。此外,开发了一种有效的优化算法,其执行子空间学习和具有保证融合的聚类。所获得的定点估计器虽然不一定是全局最佳的,但在某些规则条件下享有超出标准似然设置的所需的统计准确性。此外,提出了一种新的信息标准,以及其无垢形式,用于集群和秩选择,并且具有严格的理论支持,而不假设无限的样本大小。广泛的模拟和实数据实验证明了所提出的方法的统计准确性和可解释性。
translated by 谷歌翻译
考虑Huber污染高斯模型下的位置与差异矩阵的同时估计问题。首先,我们在人口层面上学习最低$ F $估计,对应于具有非参数鉴别者的生成对抗方法,并在$ F $建立条件,这导致强大的估计,类似于最小距离估计的鲁棒性。更重要的是,我们开发具有简单的样条鉴别器的贸易对抗算法,其可以通过嵌套优化实现,使得可以通过给出当前发生器来最大化凹形物理函数来完全更新鉴别器参数。提出的方法显示,根据$ F $ -diverence和所使用的罚款,可以实现最低限度的最佳速率或接近最佳速率。我们提出了模拟研究,以证明具有经典鲁棒估算器,成对方法和神经网络鉴别器的成对方法和生成对抗方法的提出方法的优势。
translated by 谷歌翻译
Artificial neural networks are functions depending on a finite number of parameters typically encoded as weights and biases. The identification of the parameters of the network from finite samples of input-output pairs is often referred to as the \emph{teacher-student model}, and this model has represented a popular framework for understanding training and generalization. Even if the problem is NP-complete in the worst case, a rapidly growing literature -- after adding suitable distributional assumptions -- has established finite sample identification of two-layer networks with a number of neurons $m=\mathcal O(D)$, $D$ being the input dimension. For the range $D<m<D^2$ the problem becomes harder, and truly little is known for networks parametrized by biases as well. This paper fills the gap by providing constructive methods and theoretical guarantees of finite sample identification for such wider shallow networks with biases. Our approach is based on a two-step pipeline: first, we recover the direction of the weights, by exploiting second order information; next, we identify the signs by suitable algebraic evaluations, and we recover the biases by empirical risk minimization via gradient descent. Numerical results demonstrate the effectiveness of our approach.
translated by 谷歌翻译
高维非正交掺入张量的CP分解是许多学科的广泛应用的重要问题。然而,以前的理论保证的工作通常在CP组分的基础载体上承担限制性的不连贯条件。在本文中,我们提出了新的计算高效的复合PCA和并发正交化算法,以便在轻度不连结条件下的理论保证。复合PCA将主成分或奇异值分解应用于张量数据的矩阵,以获得奇异矢量,然后在第一步骤中获得的奇异载体的基质折叠。它可以用作Tensor CP分解的任何迭代优化方案的初始化。并发正交化算法通过将突起同时施加到其他模式中的其他模式所产生的空格的正交补充,迭代地估计张量的每个模式的基础向量。旨在改善具有低或中等高CP等级的张量的交替的最小二乘估计器和其他形式的高阶正交迭代,并且当任何给定的初始估计器的错误被小常数界定时,它保证快速收敛。我们的理论调查为两种提出的算法提供了估算准确性和收敛速率。我们对合成数据的实施表明了我们对现有方法的方法的显着实际优势。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译