本文比较了软件定义网络中的网络安全性的两种深入强化学习方法。对深Q网络的神经情节控制已实施,并将其与双重深Q网络进行了比较。这两种算法以类似于零和游戏的格式实现。对两个游戏结果进行了两尾t检验分析,其中包含为防守者赢得的冠军的数量。另一个比较是在各自游戏中代理商的游戏得分上进行的。进行分析是为了确定哪种算法是游戏表演者最好的算法,以及它们之间是否存在显着差异,证明一个算法是否会更偏爱另一个。发现两种方法之间没有显着统计差异。
translated by 谷歌翻译
钢筋学习的长期目标是建立智能代理,表现出快速学习,灵活地转移适于人类和动物的技能。本文调查了两个框架来解决这些目标的框架:情节控制和继承功能。epiSodic控制是一种认知的灵感方法,依赖于情节内存,是代理经历的基于实例的内存模型。同时,继承者功能和广义政策改进(SF&GPI)是一个元和传输学习框架,允许学习可以有效地重复使用不同奖励功能的稍后任务的任务的策略。单独地,这两种技术表明令人印象深刻的结果,从而大大提高了样本效率和优雅的重复使用了先前学习的政策。因此,我们概述了两种方法中的两种方法的组合,并经验证明其益处。
translated by 谷歌翻译
在这项工作中,我们提出并评估了一种新的增强学习方法,紧凑体验重放(编者),它使用基于相似转换集的复发的预测目标值的时间差异学习,以及基于两个转换的经验重放的新方法记忆。我们的目标是减少在长期累计累计奖励的经纪人培训所需的经验。它与强化学习的相关性与少量观察结果有关,即它需要实现类似于文献中的相关方法获得的结果,这通常需要数百万视频框架来培训ATARI 2600游戏。我们举报了在八个挑战街机学习环境(ALE)挑战游戏中,为仅10万帧的培训试验和大约25,000次迭代的培训试验中报告了培训试验。我们还在与基线的同一游戏中具有相同的实验协议的DQN代理呈现结果。为了验证从较少数量的观察结果近似于良好的政策,我们还将其结果与从啤酒的基准上呈现的数百万帧中获得的结果进行比较。
translated by 谷歌翻译
在探索中,由于当前的低效率而引起的强化学习领域,具有较大动作空间的学习控制政策是一个具有挑战性的问题。在这项工作中,我们介绍了深入的强化学习(DRL)算法呼叫多动作网络(MAN)学习,以应对大型离散动作空间的挑战。我们建议将动作空间分为两个组件,从而为每个子行动创建一个值神经网络。然后,人使用时间差异学习来同步训练网络,这比训练直接动作输出的单个网络要简单。为了评估所提出的方法,我们在块堆叠任务上测试了人,然后扩展了人类从Atari Arcade学习环境中使用18个动作空间的12个游戏。我们的结果表明,人的学习速度比深Q学习和双重Q学习更快,这意味着我们的方法比当前可用于大型动作空间的方法更好地执行同步时间差异算法。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
使用规划算法和神经网络模型的基于模型的强化学习范例最近在不同的应用中实现了前所未有的结果,导致现在被称为深度增强学习的内容。这些代理非常复杂,涉及多个组件,可能会为研究产生挑战的因素。在这项工作中,我们提出了一个适用于这些类型代理的新模块化软件架构,以及一组建筑块,可以轻松重复使用和组装,以构建基于模型的增强学习代理。这些构建块包括规划算法,策略和丢失功能。我们通过将多个这些构建块组合实现和测试经过针对三种不同的测试环境的代理来说明这种架构的使用:Cartpole,Minigrid和Tictactoe。在我们的实施中提供的一个特定的规划算法,并且以前没有用于加强学习,我们称之为Imperage Minimax,在三个测试环境中取得了良好的效果。用这种架构进行的实验表明,规划算法,政策和损失函数的最佳组合依赖性严重问题。该结果提供了证据表明,拟议的架构是模块化和可重复使用的,对想要研究新环境和技术的强化学习研究人员有用。
translated by 谷歌翻译
由于它们所需的大量集中,最深度增强学习算法的状态是对渐近性能的大量集中的效率低。由哺乳动物海马的启发的episodic加强学习(ERL)算法通常使用扩展的内存系统从过去的事件开始学习,以克服这个样本效率问题。然而,这种内存增强通常用作仅仅是缓冲区,从中绘制了孤立的过去经验,以便以离线方式学习(例如,重播)。这里,我们证明包括从集扩展抽样顺序导出的所获取的内存内容中的偏差来提高弹性控制算法的样本和存储器效率。我们在觅食任务中测试了我们的顺序焦点控制(SEC)模型,以显示存储和使用集成剧集作为事件序列导致更快的学习,与较少的内存要求相反,与隔离的缓冲区相比只有事件。我们还研究了内存约束的影响,忘记了SEC算法的顺序和非顺序版本。此外,我们讨论了类似海马的快速记忆系统如何在哺乳动物大脑中引导慢速皮质和皮质学习习惯的习惯。
translated by 谷歌翻译
Deep reinforcement learning (RL) has achieved several high profile successes in difficult decision-making problems. However, these algorithms typically require a huge amount of data before they reach reasonable performance. In fact, their performance during learning can be extremely poor. This may be acceptable for a simulator, but it severely limits the applicability of deep RL to many real-world tasks, where the agent must learn in the real environment. In this paper we study a setting where the agent may access data from previous control of the system. We present an algorithm, Deep Q-learning from Demonstrations (DQfD), that leverages small sets of demonstration data to massively accelerate the learning process even from relatively small amounts of demonstration data and is able to automatically assess the necessary ratio of demonstration data while learning thanks to a prioritized replay mechanism. DQfD works by combining temporal difference updates with supervised classification of the demonstrator's actions. We show that DQfD has better initial performance than Prioritized Dueling Double Deep Q-Networks (PDD DQN) as it starts with better scores on the first million steps on 41 of 42 games and on average it takes PDD DQN 83 million steps to catch up to DQfD's performance. DQfD learns to out-perform the best demonstration given in 14 of 42 games. In addition, DQfD leverages human demonstrations to achieve state-of-the-art results for 11 games. Finally, we show that DQfD performs better than three related algorithms for incorporating demonstration data into DQN.
translated by 谷歌翻译
强化学习(RL)为解决各种复杂的决策任务提供了新的机会。但是,现代的RL算法,例如,深Q学习是基于深层神经网络,在Edge设备上运行时的计算成本很高。在本文中,我们提出了QHD,一种高度增强的学习,它模仿了大脑特性,以实现健壮和实时学习。 QHD依靠轻巧的大脑启发模型来学习未知环境中的最佳政策。我们首先建立一个新颖的数学基础和编码模块,该模块将状态行动空间映射到高维空间中。因此,我们开发了一个高维回归模型,以近似Q值函数。 QHD驱动的代理通过比较每个可能动作的Q值来做出决定。我们评估了不同的RL培训批量和本地记忆能力对QHD学习质量的影响。我们的QHD也能够以微小的本地记忆能力在线学习,这与培训批量大小一样小。 QHD通过进一步降低记忆容量和批处理大小来提供实时学习。这使得QHD适用于在边缘环境中高效的增强学习,这对于支持在线和实时学习至关重要。我们的解决方案还支持少量的重播批量大小,与DQN相比,该批量的速度为12.3倍,同时确保质量损失最小。我们的评估显示了实时学习的QHD能力,比最先进的Deep RL算法提供了34.6倍的速度和更高的学习质量。
translated by 谷歌翻译
通过回顾一封来自情节记忆的过去的经验,可以通过回忆过去的经验来实现钢筋学习的样本效率。我们提出了一种新的基于模型的轨迹的集体记忆,解决了集体控制的当前限制。我们的记忆估计轨迹值,指导代理人朝着良好的政策。基于内存构建,我们通过动态混合控制统一模型的基于动态和习惯学习来构建互补学习模型,进入单个架构。实验表明,我们的模型可以比各种环境中的其他强力加强学习代理更快,更好地学习,包括随机和非马尔可夫环境。
translated by 谷歌翻译
In recent years there have been many successes of using deep representations in reinforcement learning. Still, many of these applications use conventional architectures, such as convolutional networks, LSTMs, or auto-encoders. In this paper, we present a new neural network architecture for model-free reinforcement learning. Our dueling network represents two separate estimators: one for the state value function and one for the state-dependent action advantage function. The main benefit of this factoring is to generalize learning across actions without imposing any change to the underlying reinforcement learning algorithm. Our results show that this architecture leads to better policy evaluation in the presence of many similar-valued actions. Moreover, the dueling architecture enables our RL agent to outperform the state-of-the-art on the Atari 2600 domain.
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
强化学习代理通过鼓励最大化其总奖励的行为来学习,通常由环境提供。然而,在许多环境中,在一系列行动而不是每个单一动作之后提供奖励,导致代理在这些操作是有效的方面遇到模糊性,称为信用分配问题的问题。在本文中,我们提出了由行为心理学启发的两种策略,使代理人能够在本质上估计更多信息奖励价值,以便没有奖励。第一个策略,称为自我惩罚(SP),劝阻代理人犯错误,导致不良终端状态。第二次策略,称为奖励回填(RB),退回两个奖励行动之间的奖励。我们证明,在某些假设和不管使用的加强学习算法的情况下,这两种策略在其总奖励方面维护了所有可能政策的空间中的政策顺序,并且通过扩展,维护最佳政策。因此,我们提出的策略与任何通过经验学习价值或动作值函数的任何强化学习算法。我们将这两种策略纳入三种流行的深度加强学习方法,并在三十塔塔利游戏中评估结果。参数调整后,我们的结果表明,拟议的策略将测试方法以超过25倍的性能改善提高了超过65%的测试游戏。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
The deep reinforcement learning community has made several independent improvements to the DQN algorithm. However, it is unclear which of these extensions are complementary and can be fruitfully combined. This paper examines six extensions to the DQN algorithm and empirically studies their combination. Our experiments show that the combination provides state-of-the-art performance on the Atari 2600 benchmark, both in terms of data efficiency and final performance. We also provide results from a detailed ablation study that shows the contribution of each component to overall performance.
translated by 谷歌翻译
未用性的自治车辆(无人机)在过去的美国军事活动中对侦察和监督任务进行了重大贡献。随着无人机的普遍性增加,柜台上还有改进,使他们难以在感兴趣的领域成功获得宝贵的智能。因此,现代无人机可以在最大化他们的生存机会的同时实现他们的任务已经重要。在这项工作中,我们专门研究从指定开始到目标的识别短路的问题,同时收集所有奖励,避免随机移动到网格上的对手。我们还可以在军事环境中提供框架的可能应用,即自动伤员疏散。我们展示了三种方法来解决这个问题的比较:即我们实施一个深度Q学习模型,一个$ \ varepsilon $ -greedy表格Q学习模型,以及在线优化框架。我们的计算实验,使用具有随机对手的简单网格世界环境设计,展示这些方法如何工作,并在性能,准确性和计算时间方面进行比较。
translated by 谷歌翻译
Atari games have been a long-standing benchmark in the reinforcement learning (RL) community for the past decade. This benchmark was proposed to test general competency of RL algorithms. Previous work has achieved good average performance by doing outstandingly well on many games of the set, but very poorly in several of the most challenging games. We propose Agent57, the first deep RL agent that outperforms the standard human benchmark on all 57 Atari games. To achieve this result, we train a neural network which parameterizes a family of policies ranging from very exploratory to purely exploitative. We propose an adaptive mechanism to choose which policy to prioritize throughout the training process. Additionally, we utilize a novel parameterization of the architecture that allows for more consistent and stable learning.
translated by 谷歌翻译
本文提出了用于学习两人零和马尔可夫游戏的小说,端到端的深钢筋学习算法。我们的目标是找到NASH平衡政策,这些策略不受对抗对手的剥削。本文与以前在广泛形式的游戏中找到NASH平衡的努力不同,这些游戏具有树结构的过渡动态和离散的状态空间,本文着重于具有一般过渡动态和连续状态空间的马尔可夫游戏。我们提出了(1)NASH DQN算法,该算法将DQN与nash finding subroutine集成在一起的联合价值函数; (2)NASH DQN利用算法,该算法还采用了指导代理商探索的剥削者。我们的算法是理论算法的实用变体,这些变体可以保证在基本表格设置中融合到NASH平衡。对表格示例和两个玩家Atari游戏的实验评估证明了针对对抗对手的拟议算法的鲁棒性,以及对现有方法的优势性能。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译