图形神经网络(GNN)在各种图挖掘任务中取得了巨大的成功。但是,当GNN堆叠着许多层时,总是观察到急剧性能降解。结果,大多数GNN仅具有浅层建筑,这限制了它们的表现力和对深社区的开发。最近的研究将深度GNN的性能降低归因于\ textit {过度平滑}的问题。在本文中,我们将传统的图形卷积操作分为两个独立操作:\ textit {passagation}(\ textbf {p})和\ textit {transformation}(\ textbf {t})。可以分为传播深度($ d_p $)和转换深度($ d_t $)。通过广泛的实验,我们发现深度GNNS性能下降的主要原因是\ textit {model dygradation}问题是由大$ d_t $而不是\ textit {过度平滑}问题引起的,主要是由大$ d_p $引起的。 。此外,我们提出\ textIt {自适应初始残留}(air),一个与各种GNN架构兼容的插件模块,以减轻\ textit {model {model dradation degradation}问题和\ textit {textit {过度敏感}问题同时。六个现实世界数据集的实验结果表明,配备空气的GNN胜过大多数具有浅层建筑的GNN,这是由于大型$ d_p $和$ d_t $的好处,而与空气相关的时间成本则可以忽略。
translated by 谷歌翻译
图形神经网络(GNN)已被密切应用于各种基于图的应用程序。尽管他们成功了,但手动设计行为良好的GNN需要巨大的人类专业知识。因此,发现潜在的最佳数据特异性GNN体系结构效率低下。本文提出了DFG-NAS,这是一种新的神经体系结构搜索(NAS)方法,可自动搜索非常深入且灵活的GNN体系结构。与大多数专注于微构造的方法不同,DFG-NAS突出了另一个设计级别:搜索有关原子传播的宏观构造(\ TextBf {\ Textbf {\ Texttt {p}}})和转换(\ texttt {\ textttt {\ texttt {\ texttt {\ texttt { T}})的操作被整合并组织到GNN中。为此,DFG-NAS为\ textbf {\ texttt {p-t}}}的排列和组合提出了一个新颖的搜索空间,该搜索空间是基于消息传播的散布,定义了四个自定义设计的宏观架构突变,并采用了进化性algorithm to to the Evolutionary algorithm进行有效的搜索。关于四个节点分类任务的实证研究表明,DFG-NAS优于最先进的手动设计和GNN的NAS方法。
translated by 谷歌翻译
图形神经网络(GNN)在许多基于图的应用程序中取得了巨大成功。但是,巨大的尺寸和高稀疏度的图表阻碍了其在工业场景下的应用。尽管为大规模图提出了一些可扩展的GNN,但它们为每个节点采用固定的$ k $ hop邻域,因此在稀疏区域内采用大型繁殖深度时面临过度光滑的问题。为了解决上述问题,我们提出了一种新的GNN体系结构 - 图形注意多层感知器(GAMLP),该架构可以捕获不同图形知识范围之间的基本相关性。我们已经与天使平台部署了GAMLP,并进一步评估了现实世界数据集和大规模工业数据集的GAMLP。这14个图数据集的广泛实验表明,GAMLP在享有高可扩展性和效率的同时,达到了最先进的性能。具体来说,在我们的大规模腾讯视频数据集上的预测准确性方面,它的表现优于1.3 \%,同时达到了高达$ 50 \ times $ triending的速度。此外,它在开放图基准的最大同质和异质图(即OGBN-PAPERS100M和OGBN-MAG)的排行榜上排名第一。
translated by 谷歌翻译
Graph neural networks have shown significant success in the field of graph representation learning. Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations. Nevertheless, one layer of these neighborhood aggregation methods only consider immediate neighbors, and the performance decreases when going deeper to enable larger receptive fields. Several recent studies attribute this performance deterioration to the over-smoothing issue, which states that repeated propagation makes node representations of different classes indistinguishable. In this work, we study this observation systematically and develop new insights towards deeper graph neural networks. First, we provide a systematical analysis on this issue and argue that the key factor compromising the performance significantly is the entanglement of representation transformation and propagation in current graph convolution operations. After decoupling these two operations, deeper graph neural networks can be used to learn graph node representations from larger receptive fields. We further provide a theoretical analysis of the above observation when building very deep models, which can serve as a rigorous and gentle description of the over-smoothing issue. Based on our theoretical and empirical analysis, we propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields. A set of experiments on citation, coauthorship, and co-purchase datasets have confirmed our analysis and insights and demonstrated the superiority of our proposed methods. CCS CONCEPTS• Mathematics of computing → Graph algorithms; • Computing methodologies → Artificial intelligence; Neural networks.
translated by 谷歌翻译
Graph神经网络(GNN)最近在许多基于图的应用程序中都实现了最先进的性能。尽管具有很高的表现力,但他们通常需要在多个培训时期进行昂贵的递归邻里扩展,并面临可伸缩性问题。此外,它们中的大多数是不灵活的,因为它们仅限于固定跳跃社区,并且对不同节点的实际接受场需求不敏感。我们通过引入可扩展且灵活的图表多层感知器(GAMLP)来规避这些限制。随着非线性转化和特征传播的分离,GAMLP通过以预先计算的方式执行传播程序来显着提高可伸缩性和效率。有了三个原则的接受场注意力,GAMLP中的每个节点都具有灵活性和适应性,以利用接收场的不同尺寸的传播特征。我们对三个大型开放图基准(例如OGBN-PAPERS100M,OGBN产品和OGBN-MAG)进行了广泛的评估,这表明GAMLP不仅可以实现前面的性能,而且还提供了较高的可扩展性和效率。
translated by 谷歌翻译
最近,图形神经网络(GNN)通过利用图形结构和节点特征的知识来表现出图表表示的显着性能。但是,他们中的大多数都有两个主要限制。首先,GNN可以通过堆叠更多的层来学习高阶结构信息,但由于过度光滑的问题,无法处理较大的深度。其次,由于昂贵的计算成本和高内存使用情况,在大图上应用这些方法并不容易。在本文中,我们提出了节点自适应特征平滑(NAFS),这是一种简单的非参数方法,该方法构建了没有参数学习的节点表示。 NAFS首先通过特征平滑提取每个节点及其不同啤酒花的邻居的特征,然后自适应地结合了平滑的特征。此外,通过不同的平滑策略提取的平滑特征的合奏可以进一步增强构建的节点表示形式。我们在两个不同的应用程序方案上对四个基准数据集进行实验:节点群集和链接预测。值得注意的是,具有功能合奏的NAFS优于这些任务上最先进的GNN,并减轻上述大多数基于学习的GNN对应物的两个限制。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)在许多现实世界中的应用(例如建议和药物发现)中取得了巨大的成功。尽管取得了成功,但已将过度厚度确定为限制GNN绩效的关键问题之一。这表明由于堆叠聚合器,学到的节点表示是无法区分的。在本文中,我们提出了一种新的观点,以研究深度GNN的性能降低,即特征过度相关。通过有关此问题的经验和理论研究,我们证明了更深层次的GNN中的特征过度相关的存在,并揭示了导致该问题的潜在原因。为了减少功能相关性,我们提出了一个通用框架,可以鼓励GNN编码较少的冗余信息。广泛的实验表明,Decorr可以帮助实现更深入的GNN,并与现有的技术相辅相成。
translated by 谷歌翻译
过度平滑是一个具有挑战性的问题,这会降低深图卷积网络(GCNS)的性能。然而,用于缓解过度平滑问题的现有研究缺乏一般性或有效性。在本文中,我们分析了过度平滑问题背后的潜在问题,即特征 - 多样性退化,梯度消失和模型重量衰减。灵感来自于此,我们提出了一个简单而有效的即插即用模块,速度,缓解过度平滑。具体地,对于GCN模型的每个中间层,随机地(或基于节点度)选择节点以通过直接向非线性函数馈送它们的输入特征来跳过卷积操作。分析,1)跳过卷积操作可以防止特征失去多样性; 2)“跳过”节点使能梯度直接传递回来,从而减轻梯度消失和模型权重过腐蚀问题。为了展示Skipnode的优越性,我们对九个流行的数据集进行了广泛的实验,包括同性恋和异化图,在两个典型的任务上具有不同的图表大小:节点分类和链路预测。具体而言,1)SkipNode具有适应不同数据集和任务的各种基于GCN的模型的普遍性。 2)Skipnode优于最近最先进的反平滑插头 - 播放模块,即DropEdge和Dropnode,在不同的设置中。代码将在GitHub上公开提供。
translated by 谷歌翻译
图形神经网络(GNN)由于从图形结构数据中学习表示能力而引起了很多关注。尽管GNN在许多域中成功地应用了,但GNN的优化程度较低,并且在节点分类的性能很大程度上受到了长尾节点学位分布的影响。本文着重于通过归一化提高GNN的性能。详细说明,通过研究图中的节点度的长尾巴分布,我们提出了一种新颖的GNN归一化方法,该方法称为RESNORM(\ textbf {res}将长尾巴分布纳入正常分布,通过\ textbf {norm} alization)。 RESNOR的$比例$操作重塑节点标准偏差(NSTD)分布,以提高尾部节点的准确性(\ textit {i}。\ textit {e}。,低度节点)。我们提供了理论解释和经验证据,以理解上述$ scale $的机制。除了长期的分销问题外,过度光滑也是困扰社区的基本问题。为此,我们分析了标准偏移的行为,并证明了标准移位是重量矩阵上的预处理,从而增加了过度平滑的风险。考虑到过度光滑的问题,我们为Resnorm设计了一个$ Shift $操作,以低成本的方式模拟了特定于学位的参数策略。广泛的实验验证了重新分类对几个节点分类基准数据集的有效性。
translated by 谷歌翻译
图形神经网络已成为从图形结构数据学习的不可缺少的工具之一,并且它们的实用性已在各种各样的任务中显示。近年来,建筑设计的巨大改进,导致各种预测任务的性能更好。通常,这些神经架构在同一层中使用可知的权重矩阵组合节点特征聚合和特征转换。这使得分析从各种跳过的节点特征和神经网络层的富有效力来挑战。由于不同的图形数据集显示在特征和类标签分布中的不同级别和异常级别,因此必须了解哪些特征对于没有任何先前信息的预测任务是重要的。在这项工作中,我们将节点特征聚合步骤和深度与图形神经网络分离,并经验分析了不同的聚合特征在预测性能中发挥作用。我们表明,并非通过聚合步骤生成的所有功能都很有用,并且通常使用这些较少的信息特征可能对GNN模型的性能有害。通过我们的实验,我们表明学习这些功能的某些子集可能会导致各种数据集的性能更好。我们建议使用Softmax作为常规器,并从不同跳距的邻居聚合的功能的“软选择器”;和L2 - GNN层的标准化。结合这些技术,我们呈现了一个简单浅的模型,特征选择图神经网络(FSGNN),并经验展示所提出的模型比九个基准数据集中的最先进的GNN模型实现了可比或甚至更高的准确性节点分类任务,具有显着的改进,可达51.1%。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have achieved promising performance on a wide range of graph-based tasks. Despite their success, one severe limitation of GNNs is the over-smoothing issue (indistinguishable representations of nodes in different classes). In this work, we present a systematic and quantitative study on the over-smoothing issue of GNNs. First, we introduce two quantitative metrics, MAD and MADGap, to measure the smoothness and oversmoothness of the graph nodes representations, respectively. Then, we verify that smoothing is the nature of GNNs and the critical factor leading to over-smoothness is the low information-to-noise ratio of the message received by the nodes, which is partially determined by the graph topology. Finally, we propose two methods to alleviate the oversmoothing issue from the topological view: (1) MADReg which adds a MADGap-based regularizer to the training objective; (2) AdaEdge which optimizes the graph topology based on the model predictions. Extensive experiments on 7 widely-used graph datasets with 10 typical GNN models show that the two proposed methods are effective for relieving the over-smoothing issue, thus improving the performance of various GNN models.
translated by 谷歌翻译
最近关于图表卷积网络(GCN)的研究表明,初始节点表示(即,第一次图卷积前的节点表示)很大程度上影响最终的模型性能。但是,在学习节点的初始表示时,大多数现有工作线性地组合了节点特征的嵌入,而不考虑特征之间的交互(或特征嵌入)。我们认为,当节点特征是分类时,例如,在许多实际应用程序中,如用户分析和推荐系统,功能交互通常会对预测分析进行重要信号。忽略它们将导致次优初始节点表示,从而削弱后续图表卷积的有效性。在本文中,我们提出了一个名为CatGCN的新GCN模型,当节点功能是分类时,为图表学习量身定制。具体地,我们将显式交互建模的两种方式集成到初始节点表示的学习中,即在每对节点特征上的本地交互建模和人工特征图上的全局交互建模。然后,我们通过基于邻域聚合的图形卷积来优化增强的初始节点表示。我们以端到端的方式训练CatGCN,并在半监督节点分类上展示它。来自腾讯和阿里巴巴数据集的三个用户分析的三个任务(预测用户年龄,城市和购买级别)的大量实验验证了CatGCN的有效性,尤其是在图表卷积之前执行特征交互建模的积极效果。
translated by 谷歌翻译
Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data. Recently, GCNs and subsequent variants have shown superior performance in various application areas on real-world datasets. Despite their success, most of the current GCN models are shallow, due to the over-smoothing problem.In this paper, we study the problem of designing and analyzing deep graph convolutional networks. We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques: Initial residual and Identity mapping. We provide theoretical and empirical evidence that the two techniques effectively relieves the problem of over-smoothing. Our experiments show that the deep GCNII model outperforms the state-of-the-art methods on various semi-and fullsupervised tasks. Code is available at https: //github.com/chennnM/GCNII.
translated by 谷歌翻译
图形神经网络(GNNS)由于图形数据的规模和模型参数的数量呈指数增长,因此限制了它们在实际应用中的效用,因此往往会遭受高计算成本。为此,最近的一些作品着重于用彩票假设(LTH)稀疏GNN,以降低推理成本,同时保持绩效水平。但是,基于LTH的方法具有两个主要缺点:1)它们需要对密集模型进行详尽且迭代的训练,从而产生了极大的训练计算成本,2)它们仅修剪图形结构和模型参数,但忽略了节点功能维度,存在大量冗余。为了克服上述局限性,我们提出了一个综合的图形渐进修剪框架,称为CGP。这是通过在一个训练过程中设计在训练图周期修剪范式上进行动态修剪GNN来实现的。与基于LTH的方法不同,提出的CGP方法不需要重新训练,这大大降低了计算成本。此外,我们设计了一个共同策略,以全面地修剪GNN的所有三个核心元素:图形结构,节点特征和模型参数。同时,旨在完善修剪操作,我们将重生过程引入我们的CGP框架,以重新建立修剪但重要的连接。提出的CGP通过在6个GNN体系结构中使用节点分类任务进行评估,包括浅层模型(GCN和GAT),浅但深度散发模型(SGC和APPNP)以及Deep Models(GCNII和RESGCN),总共有14个真实图形数据集,包括来自挑战性开放图基准的大规模图数据集。实验表明,我们提出的策略在匹配时大大提高了训练和推理效率,甚至超过了现有方法的准确性。
translated by 谷歌翻译
图神经网络(GNN)在图形深学习域中受到了很多关注。但是,从经验和理论上,最近的研究表明,深度GNN遭受了过度拟合和过度平滑的问题。通常的解决方案不能解决深度GNN的大量运行时,或者在同一特征空间中限制了图形卷积。我们提出了自适应图扩散网络(AGDN),该网络在具有中等复杂性和运行时的不同特征空间中执行多层广义图扩散。标准图扩散方法将过渡矩阵的大且密集的功率与预定义的加权系数结合在一起。取而代之的是,AGDN将较小的多跳节点表示与可学习的加权系数结合在一起。我们提出了两种可扩展的加权系数机制,以捕获多跳信息:趋于关注(HA)和霍普·沃斯卷积(HC)。我们评估了具有半监督节点分类和链接预测任务的多样性,挑战开放图基准(OGB)数据集的AGDN。直到提交日期(2022年8月26日),AGDNS在OGBN-ARXIV,OGBN-蛋白质和OGBL-DDI数据集中实现了TOP-1性能,并且在OGBL-Citater2数据集中获得了TOP-3性能。在类似的Tesla V100 GPU卡上,AGDNS优于可逆的GNNS(REVGNNS),其复杂性为13%,REVGNN在OGBN-Proteins数据集上的培训时间为1%。 AGDN还可以通过36%的训练来实现与密封的可比性能,而OGBL-Citation2数据集的密封量为0.2%的推理运行时。
translated by 谷歌翻译
当前的图形神经网络(GNNS)遇到了过度光滑的问题,这导致无法区分的节点表示和较低的模型性能,并具有更多的GNN层。近年来已经提出了许多方法来解决这个问题。但是,现有的解决过度平滑的方法强调模型性能并忽略节点表示的过度平滑度。一次采用另外一种方法,同时缺乏整体框架​​来共同利用多个解决方案来解决过度光滑的挑战。为了解决这些问题,我们提出了Grato,这是一个基于神经体系结构搜索的框架,以自动搜索GNNS体系结构。 Grato采用新颖的损失功能,以促进模型性能和表示平滑度之间的平衡。除了现有方法外,我们的搜索空间还包括DropAttribute,这是一种减轻过度光滑挑战的新计划,以充分利用各种解决方案。我们在六个现实世界数据集上进行了广泛的实验,以评估Grato,这表明Grato在过度平滑的指标中的表现优于基准,并在准确性方面取得了竞争性能。 Grato在GNN层数量增加的情况下特别有效且健壮。进一步的实验确定了通过grato学习的节点表示的质量和模型架构的有效性。我们在Github(\ url {https://github.com/fxsxjtu/grato})上提供Grato的CIDE。
translated by 谷歌翻译
由于学习节点表示的优越性,图形神经网络(GNNS)受到了巨大的关注。这些模型依赖于消息传递和特征转换功能来从邻居编码结构和功能信息。然而,堆叠更多的卷积层显着降低了GNN的性能。大多数最近的研究将此限制属于过平滑问题,其中节点嵌入式会聚到无法区分的向量。通过许多实验观察,我们认为,主要因素降低性能是不稳定的正向标准化和后向梯度因特征变换的不当设计而导致的,尤其是对于未发生过平滑的浅GNN。因此,我们提出了一个名为Ortho-GConv的新型正交特征转换,这通常可以增加现有的GNN骨干,以稳定模型训练并改善模型的泛化性能。具体地,我们从三个视角综合地维持特征变换的正交性,即混合权重初始化,正交变换和正交正规。通过用ortho-gconv配备现有的GNN(例如GCN,JKNET,GCNII),我们展示了正交特征变换的一般性以实现稳定训练,并显示其对节点和图形分类任务的有效性。
translated by 谷歌翻译
提高GCN的深度(预计将允许更多表达性)显示出损害性能,尤其是在节点分类上。原因的主要原因在于过度平滑。过度平滑的问题将GCN的输出驱动到一个在节点之间包含有限的区别信息的空间,从而导致表现不佳。已经提出了一些有关完善GCN架构的作品,但理论上仍然未知这些改进是否能够缓解过度平衡。在本文中,我们首先从理论上分析了通用GCN如何与深度增加的作用,包括通用GCN,GCN,具有偏见,RESGCN和APPNP。我们发现所有这些模型都以通用过程为特征:所有节点融合到Cuboid。在该定理下,我们建议通过在每个训练时期随机去除一定数量的边缘来减轻过度光滑的状态。从理论上讲,Dropedge可以降低过度平滑的收敛速度,或者可以减轻尺寸崩溃引起的信息损失。对模拟数据集的实验评估已可视化不同GCN之间过度平滑的差异。此外,对几个真正的基准支持的广泛实验,这些实验始终如一地改善各种浅GCN和深度GCN的性能。
translated by 谷歌翻译
我们提出了一个框架,该框架会自动将不可缩放的GNN转换为基于预典型的GNN,该GNN对于大型图表有效且可扩展。我们框架的优势是两倍。1)它通过将局部特征聚合与其图形卷积中的重量学习分开,2)通过将其边缘分解为小型图形,将其有效地在GPU上进行了预先执行,将各种局部特征聚合与重量学习分开,将各种局部特征聚合从重量学习中分离出来,从而使各种不可估计的GNN转换为大规模图表。和平衡的集合。通过大规模图的广泛实验,我们证明了转化的GNN在训练时间内的运行速度比现有的GNN更快,同时实现了最先进的GNN的竞争精度。因此,我们的转型框架为可伸缩GNN的未来研究提供了简单有效的基础。
translated by 谷歌翻译
Recent works have impressively demonstrated that there exists a subnetwork in randomly initialized convolutional neural networks (CNNs) that can match the performance of the fully trained dense networks at initialization, without any optimization of the weights of the network (i.e., untrained networks). However, the presence of such untrained subnetworks in graph neural networks (GNNs) still remains mysterious. In this paper we carry out the first-of-its-kind exploration of discovering matching untrained GNNs. With sparsity as the core tool, we can find \textit{untrained sparse subnetworks} at the initialization, that can match the performance of \textit{fully trained dense} GNNs. Besides this already encouraging finding of comparable performance, we show that the found untrained subnetworks can substantially mitigate the GNN over-smoothing problem, hence becoming a powerful tool to enable deeper GNNs without bells and whistles. We also observe that such sparse untrained subnetworks have appealing performance in out-of-distribution detection and robustness of input perturbations. We evaluate our method across widely-used GNN architectures on various popular datasets including the Open Graph Benchmark (OGB).
translated by 谷歌翻译