在本文中,我们提出了一个新的基于聚类的主动学习框架,即使用基于聚类的采样(ALCS)的主动学习,以解决标记数据的短缺。ALCS采用基于密度的聚类方法来探索数据集群结构,而无需详尽的参数调整。引入了基于双簇边界的样本查询过程,以提高对高度重叠类分类的学习绩效。此外,我们制定了一种有效的多样性探索策略,以解决查询样品之间的冗余。我们的实验结果证明了ALCS方法的疗效。
translated by 谷歌翻译
哪些目标标签对于图形神经网络(GNN)培训最有效?在某些应用GNNS Excel样药物设计或欺诈检测的应用中,标记新实例很昂贵。我们开发一个具有数据效率的主动采样框架,即ScatterSample,以在主动学习设置下训练GNN。 ScatterSample采用称为不同确定性的抽样模块,从样品空间的不同区域收集具有较大不确定性的实例以进行标记。为了确保所选节点的多样化,不同的确定性簇群簇较高的不确定性节点,​​并从每个群集中选择代表性节点。严格的理论分析表明,与标准的主动采样方法相比,我们的ScatterSample算法进一步支持了其优势,该方法旨在简单地简单地提高不确定性,而不是使样品多样化。特别是,我们表明ScatterSample能够在整个样品空间上有效地减少模型不确定性。我们在五个数据集上的实验表明,散点样本明显优于其他GNN主动学习基线,特别是它将采样成本降低了50%,同时达到了相同的测试准确性。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
主动学习通过从未标记的数据集中标记有信息的样本来有效地构建标记的数据集。在现实世界中的活跃学习方案中,考虑到所选样本的多样性至关重要,因为存在许多冗余或高度相似的样本。核心设定方法是基于多样性的有希望的方法,根据样品之间的距离选择不同的样品。然而,与选择最困难的样本的基于不确定性的方法相比,该方法的性能差,神经模型表现出低置信度。在这项工作中,我们通过密度的晶状体分析特征空间,有趣的是,观察到局部稀疏区域往往比密集区域具有更多信息样本。通过我们的分析,我们将核心设定方法赋予密度意识,并提出密度感知的核心集(DACS)。该策略是估计未标记样品的密度,并主要从稀疏区域选择不同的样品。为了减少估计密度的计算瓶颈,我们还基于对区域敏感的散列引入了新的密度近似。实验结果清楚地表明了DAC在分类和回归任务中的功效,并特别表明DAC可以在实际情况下产生最先进的性能。由于DACS微弱地取决于神经体系结构,因此我们提出了一种简单而有效的组合方法,以表明现有方法可以与DAC合并。
translated by 谷歌翻译
我们提出了Patron,这是一种新方法,它使用基于及时的不确定性估计,用于在冷启动场景下进行预训练的语言模型进行微调的数据选择,即,没有初始标记的数据可用。在顾客中,我们设计(1)一种基于迅速的不确定性传播方法来估计数据点的重要性和(2)分区 - 然后 - 剥离(PTR)策略,以促进对注释的样品多样性。六个文本分类数据集的实验表明,赞助人的表现优于最强的冷启动数据选择基准,高达6.9%。此外,仅具有128个标签,顾客分别基于香草微调和及时的学习,获得了91.0%和92.1%的全面监督性能。我们的赞助人实施可在\ url {https://github.com/yueyu1030/patron}上获得。
translated by 谷歌翻译
广泛应用的密度峰聚类(DPC)算法使得直观的群集形成假设假设集群中心通常被具有较低局部密度的数据点包围,远离具有较高局部密度的其他数据点。然而,这种假设遭受一个限制,即在识别具有较低密度的簇时通常有问题,因为它们可以容易地合并到具有更高密度的其他簇中。结果,DPC可能无法识别具有变分密度的簇。为了解决这个问题,我们提出了一种变分浓度峰值聚类(VDPC)算法,该算法旨在系统地和自主地在具有各种类型的密度分布的数据集上执行聚类任务。具体而言,我们首先提出了一种新的方法,以确定所有数据点中的代表,并根据所确定的代表构建初始集群,以进一步分析集群财产。此外,我们根据其本地密度将所有数据点划分为不同的级别,并通过组合DPC和DBSCAN的优点来提出统一的聚类框架。因此,系统地处理跨越不同密度水平跨越不同密度水平的所有识别的初始簇以形成最终簇。为了评估所提出的VDPC算法的有效性,我们使用20个数据集进行广泛的实验,包括八个合成,六个现实世界和六个图像数据集。实验结果表明,VDPC优于两个经典算法(即,DPC和DBSCAN)和四种最先进的扩展DPC算法。
translated by 谷歌翻译
The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images. All the training data needs to be annotated in-hand before, in many real-world applications data is easy to acquire but expensive and time-consuming to label. The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool which can used for training after annotation. With total different objective, self-supervised learning which have been gaining meteoric popularity by closing the gap in performance with supervised methods on large computer vision benchmarks. self-supervised learning (SSL) these days have shown to produce low-level representations that are invariant to distortions of the input sample and can encode invariance to artificially created distortions, e.g. rotation, solarization, cropping etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks for learning. In this paper, we unify these two families of approaches from the angle of active learning using self-supervised learning mainfold and propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets using combination of classifier trained along with self-supervised loss framework of Barlow Twins to a setting where the model can encode the invariance of artificially created distortions, e.g. rotation, solarization, cropping etc.
translated by 谷歌翻译
在本文中,我们提出了一种与成对约束聚类的主动度量学习方法。该方法主动查询信息性实例对的标签,同时通过结合未标记的实例对估计底层度量,这导致更准确和有效的聚类过程。特别是,我们通过生成更多成对标签来增强查询的约束,以提供学习度量标准以增强聚类性能的附加信息。此外,我们通过顺序更新学习的度量并自适应地惩罚无关的特征来增加度量学习的鲁棒性。此外,我们提出了一种新的主​​动查询策略,通过结合邻域结构来更准确地评估实例对的信息增益,这提高了集群效率而无需额外的标记成本。理论上,我们提供了利用使用现有约束的方法使用增强查询的所提出的度量学习方法的更紧密的错误。此外,我们还使用主动查询策略而不是随机选择来研究改进。仿真设置和实际数据集的数值研究表明,当显着特征和无关的特征之间的信噪比低时,所提出的方法是特别有利的。
translated by 谷歌翻译
时间动作定位(TAL)旨在预测未修剪视频(即开始和结束时间)中动作实例的动作类别和时间边界。通常在大多数现有作品中都采用了完全监督的解决方案,并被证明是有效的。这些解决方案中的实际瓶颈之一是所需的大量标记培训数据。为了降低昂贵的人类标签成本,本文着重于很少调查但实用的任务,称为半监督TAL,并提出了一种有效的主动学习方法,名为Al-Stal。我们利用四个步骤来积极选择具有很高信息性的视频样本,并培训本地化模型,名为\ emph {火车,查询,注释,附加}。考虑定位模型的不确定性的两个评分函数配备了ALSTAL,从而促进了视频样本等级和选择。一个人将预测标签分布的熵作为不确定性的度量,称为时间提案熵(TPE)。另一个引入了基于相邻行动建议之间的共同信息的新指标,并评估视频样本的信息性,称为时间上下文不一致(TCI)。为了验证拟议方法的有效性,我们在两个基准数据集Thumos'14和ActivityNet 1.3上进行了广泛的实验。实验结果表明,与完全监督的学习相比,AL-Stal的表现优于现有竞争对手,并实现令人满意的表现。
translated by 谷歌翻译
尽管深入学习对监督点云语义细分的成功取得了成功,但获得大规模的逐点手动注释仍然是一个重大挑战。为了减轻巨大的注释负担,我们提出了一个基于区域和多样性的积极学习(REDAL),这是许多深度学习方法的一般框架,旨在自动选择用于标签获取的信息丰富和多样化的子场所。观察到只有一小部分带注释的区域足以通过深度学习的方式理解3D场景,我们使用SoftMax熵,颜色不连续性和结构复杂性来衡量子场所区域的信息。还开发了一种多样性的选择算法,以避免通过在查询批次中选择信息性但相似的区域而产生的多余注释。广泛的实验表明,我们的方法的表现高于先前的活跃学习策略,并且我们达到了90%的全面监督学习,而S3DIS和Semantickitti数据集则需要不到15%和5%的注释。我们的代码可在https://github.com/tsunghan-wu/redal上公开获取。
translated by 谷歌翻译
虽然深度学习(DL)是渴望数据的,并且通常依靠广泛的标记数据来提供良好的性能,但主动学习(AL)通过从未标记的数据中选择一小部分样本进行标签和培训来降低标签成本。因此,近年来,在有限的标签成本/预算下,深入的积极学习(DAL)是可行的解决方案,可在有限的标签成本/预算下最大化模型性能。尽管已经开发了大量的DAL方法并进行了各种文献综述,但在公平比较设置下对DAL方法的性能评估尚未可用。我们的工作打算填补这一空白。在这项工作中,我们通过重新实现19种引用的DAL方法来构建DAL Toolkit,即Deepal+。我们调查和分类与DAL相关的作品,并构建经常使用的数据集和DAL算法的比较实验。此外,我们探讨了影响DAL功效的一些因素(例如,批处理大小,训练过程中的时期数),这些因素为研究人员设计其DAL实验或执行DAL相关应用程序提供了更好的参考。
translated by 谷歌翻译
最近,无监督的域适应是一种有效的范例,用于概括深度神经网络到新的目标域。但是,仍有巨大的潜力才能达到完全监督的性能。在本文中,我们提出了一种新颖的主动学习策略,以帮助目标域中的知识转移,有效域适应。我们从观察开始,即当训练(源)和测试(目标)数据来自不同的分布时,基于能量的模型表现出自由能量偏差。灵感来自这种固有的机制,我们经验揭示了一种简单而有效的能源 - 基于能量的采样策略揭示了比需要特定架构或距离计算的现有方法的最有价值的目标样本。我们的算法,基于能量的活动域适应(EADA),查询逻辑数据组,它将域特征和实例不确定性结合到每个选择回合中。同时,通过通过正则化术语对准源域周围的目标数据紧凑的自由能,可以隐含地减少域间隙。通过广泛的实验,我们表明EADA在众所周知的具有挑战性的基准上超越了最先进的方法,具有实质性的改进,使其成为开放世界中的一个有用的选择。代码可在https://github.com/bit-da/eada获得。
translated by 谷歌翻译
我们介绍了有监督的对比度积极学习(SCAL),并根据功能相似性(功能IM)和基于主成分分析的基于特征重建误差(FRE)提出有效的活动学习策略,以选择具有不同特征表示的信息性数据示例。我们证明了我们提出的方法可实现最新的准确性,模型校准并减少在图像分类任务上平衡和不平衡数据集的主动学习设置中的采样偏差。我们还评估了模型的鲁棒性,从主动学习环境中不同查询策略得出的分配转移。使用广泛的实验,我们表明我们提出的方法的表现优于高性能密集型方法,从而使平均损坏误差降低了9.9%,在数据集偏移下的预期校准误差降低了7.2%,而AUROC降低了8.9%的AUROC。检测。
translated by 谷歌翻译
阶级不平衡问题很重要且具有挑战性。合奏方法由于其有效性而广泛用于解决此问题。但是,现有的合奏方法始终应用于原始样本中,而没有考虑原始样本之间的结构信息。限制将阻止不平衡的学习变得更好。此外,研究表明,样本中的结构信息包括本地和全球结构信息。基于上面的分析,此处提出了具有深层样本前网络(DSEN)(DSEN)和局部全球结构一致性机制(LGSCM)的不平衡合奏算法,以解决该问题。该算法可以保证高质量的深层信封样品用于用于考虑到本地流形和全球结构信息,这有助于失衡学习。首先,深层样品包络预网(DSEN)旨在挖掘样品之间的结构信息。样品。接下来,将DSEN和LGSCM放在一起以形成最终的深层样品网络网络(DSEN-LG)。之后,分别将基本分类器应用于深样品的层。最后,通过装袋集合学习机制融合了基本分类器的预测结果。为了证明该方法的有效性,选择了四十四个公共数据集和十多种代表性相关算法进行验证。实验结果表明,该算法明显优于其他不平衡的集合算法。
translated by 谷歌翻译
命名实体识别(ner)旨在标识在非结构化文本中的命名实体的提到,并将它们分类为预定义的命名实体类。尽管基于深度学习的预先训练的语言模型实现了良好的预测性能,但许多域特定的NERTASK仍然需要足够量的标记数据。主动学习(AL)是标签采集问题的一般框架,已用于NER任务,以最大限度地降低注释成本而不会牺牲模型性能。然而,令牌的严重不平衡的课程分布引入了设计有效的NER Querying方法的挑战。我们提出了al句子查询评估函数,这些函数更加关注可能的积极令牌,并评估基于句子和基于令牌的成本评估策略的这些提出的功能。我们还提出了更好的数据驱动的归一化方法来惩罚太长或太短的句子。我们在来自不同域的三个数据集上的实验表明,所提出的方法减少了带有常规方法的更好或可比预测性能的增注令牌的数量。
translated by 谷歌翻译
大型标记数据集的可用性是深度学习成功的关键组成部分。但是,大型数据集上的标签通常很耗时且昂贵。主动学习是一个研究领域,通过选择最重要的标签样本来解决昂贵的标签问题。基于多样性的采样算法被称为基于表示的主动学习方法的组成部分。在本文中,我们介绍了一种新的基于多样性的初始数据集选择算法,以选择有效学习环境中初始标记的最有用的样本集。自我监督的表示学习用于考虑初始数据集选择算法中样品的多样性。此外,我们提出了一种新型的主动学习查询策略,该策略使用基于多样性的基于一致性的嵌入方式采样。通过考虑基于一致性的嵌入方案中多样性的一致性信息,该方法可以在半监督的学习环境中选择更多信息的样本来标记。比较实验表明,通过利用未标记的数据的多样性,与先前的主动学习方法相比,该提出的方法在CIFAR-10和CALTECH-101数据集上取得了令人信服的结果。
translated by 谷歌翻译
积极学习是一种降低标签成本以构建高质量机器学习模型的既定技术。主动学习的核心组件是确定应选择哪些数据来注释的采集功能。最先进的采集功能 - 更重要的是主动学习技术 - 已经旨在最大限度地提高清洁性能(例如,准确性)并忽视了鲁棒性,这是一种受到越来越受关注的重要品质。因此,主动学习产生准确但不强大的模型。在本文中,我们提出了一种积极的学习过程,集成了对抗性培训的积极学习过程 - 最熟悉的制作强大模型的方法。通过对11个采集函数的实证研究,4个数据集,6个DNN架构和15105培训的DNN,我们表明,强大的主动学习可以产生具有鲁棒性的模型(对抗性示例的准确性),范围从2.35 \%到63.85 \%,而标准主动学习系统地实现了可忽略不计的鲁棒性(小于0.20 \%)。然而,我们的研究还揭示了在稳健性方面,在准确性上表现良好的采集功能比随机抽样更糟糕。因此,我们检查了它背后的原因,并设计了一个新的采购功能,这些功能既可定位清洁的性能和鲁棒性。我们的采集功能 - 基于熵(DRE)的基于密度的鲁棒采样 - 优于鲁棒性的其他采集功能(包括随机),最高可达24.40 \%(特别是3.84 \%),同时仍然存在竞争力准确性。此外,我们证明了DRE适用于测试选择度量,用于模型再培训,并从所有比较功能中脱颖而出,高达8.21%的鲁棒性。
translated by 谷歌翻译
由于标记医学图像数据是一个昂贵且劳动密集型的过程,因此近年来,Active学习在医学图像分割领域中广受欢迎。文献中已经提出了各种积极的学习策略,但是它们的有效性高度取决于数据集和培训方案。为了促进现有策略的比较,并为评估新策略提供了基准,我们评估了从医学分割的十项全能中的三个数据集上的几种著名的活跃学习策略的性能。此外,我们考虑了专门针对3D图像数据量身定制的扎实的采样策略。我们证明,随机和踩踏的采样都是强大的基准,并讨论了研究方法的优势和缺点。为了允许其他研究人员将他们的工作与我们的结果进行比较,我们提供了一个开源框架,以在各种医疗分割数据集上对主动学习策略进行基准测试。
translated by 谷歌翻译
The use of deep neural networks (DNNs) has recently attracted great attention in the framework of the multi-label classification (MLC) of remote sensing (RS) images. To optimize the large number of parameters of DNNs a high number of reliable training images annotated with multi-labels is often required. However, the collection of a large training set is time-consuming, complex and costly. To minimize annotation efforts for data-demanding DNNs, in this paper we present several query functions for active learning (AL) in the context of DNNs for the MLC of RS images. Unlike the AL query functions defined for single-label classification or semantic segmentation problems, each query function presented in this paper is based on the evaluation of two criteria: i) multi-label uncertainty; and ii) multi-label diversity. The multi-label uncertainty criterion is associated to the confidence of the DNNs in correctly assigning multi-labels to each image. To assess the multi-label uncertainty, we present and adapt to the MLC problems three strategies: i) learning multi-label loss ordering; ii) measuring temporal discrepancy of multi-label prediction; and iii) measuring magnitude of approximated gradient embedding. The multi-label diversity criterion aims at selecting a set of uncertain images that are as diverse as possible to reduce the redundancy among them. To assess this criterion we exploit a clustering based strategy. We combine each of the above-mentioned uncertainty strategy with the clustering based diversity strategy, resulting in three different query functions. Experimental results obtained on two benchmark archives show that our query functions result in the selection of a highly informative set of samples at each iteration of the AL process in the context of MLC.
translated by 谷歌翻译
图上的节点分类是许多实际域中的重要任务。它通常需要培训标签,在实践中获得很难或昂贵。鉴于标签的预算,主动学习旨在通过仔细选择要标记的节点来提高性能。先前的图形活动方法使用标记的节点学习表示表示,并选择一些未标记的节点进行标签采集。但是,它们并未完全利用未标记节点中存在的表示能力。我们认为,未标记节点中的表示能力对于积极学习和进一步改善了积极学习的节点分类的性能很有用。在本文中,我们提出了一个基于潜在空间聚类的活性学习框架(LSCALE),在该框架中,我们在标签和未标记的节点中充分利用了表示功能。具体而言,为了选择用于标签的节点,我们的框架使用了基于无监督功能和监督功能的动态组合,在潜在空间上使用K-Medoids聚类算法。此外,我们设计了一个增量聚类模块,以避免在不同步骤中选择的节点之间的冗余。在五个数据集上进行的广泛实验表明,我们提出的框架LSCALE始终如一,并显着超过了较大的边距。
translated by 谷歌翻译