The aim of Inverse Reinforcement Learning (IRL) is to infer a reward function $R$ from a policy $\pi$. To do this, we need a model of how $\pi$ relates to $R$. In the current literature, the most common models are optimality, Boltzmann rationality, and causal entropy maximisation. One of the primary motivations behind IRL is to infer human preferences from human behaviour. However, the true relationship between human preferences and human behaviour is much more complex than any of the models currently used in IRL. This means that they are misspecified, which raises the worry that they might lead to unsound inferences if applied to real-world data. In this paper, we provide a mathematical analysis of how robust different IRL models are to misspecification, and answer precisely how the demonstrator policy may differ from each of the standard models before that model leads to faulty inferences about the reward function $R$. We also introduce a framework for reasoning about misspecification in IRL, together with formal tools that can be used to easily derive the misspecification robustness of new IRL models.
translated by 谷歌翻译
我们提供了奖励黑客的第一个正式定义,即优化不完美的代理奖励功能的现象,$ \ Mathcal {\ tilde {r}} $,根据真实的奖励功能,$ \ MATHCAL {R} $导致性能差。 。我们说,如果增加预期的代理回报率永远无法减少预期的真实回报,则代理是不可接受的。直觉上,可以通过从奖励功能(使其“较窄”)中留出一些术语或忽略大致等效的结果之间的细粒度区分来创建一个不可接受的代理,但是我们表明情况通常不是这样。一个关键的见解是,奖励的线性性(在州行动访问计数中)使得无法实现的状况非常强烈。特别是,对于所有随机策略的集合,只有在其中一个是恒定的,只有两个奖励函数才能是不可接受的。因此,我们将注意力转移到确定性的政策和有限的随机政策集中,在这些策略中,始终存在非平凡的不可动摇的对,并为简化的存在建立必要和充分的条件,这是一个重要的不被限制的特殊情况。我们的结果揭示了使用奖励函数指定狭窄任务和对齐人类价值的AI系统之间的紧张关系。
translated by 谷歌翻译
在强化学习中,就其诱导的最佳政策而言,不同的奖励功能可以等效。一个特别众所周知的重要例子是潜在的塑造,可以将一类函数添加到任何奖励功能中,而无需更改任意过渡动态下设置的最佳策略。潜在的塑形在概念上类似于数学和物理学中的潜在,保守的矢量场和规范变换,但是以前尚未正式探索这种联系。我们在图表上开发了一种形式主义,用于抽象马尔可夫决策过程的图表,并显示如何将潜在塑造正式解释为本框架中的梯度。这使我们能够加强Ng等人的结果。 (1999)描述了潜在塑造是始终保留最佳政策的唯一添加奖励转换的条件。作为我们形式主义的附加应用,我们定义了从每个潜在塑造等效类中挑选单个唯一奖励功能的规则。
translated by 谷歌翻译
强化学习(RL)旨在在给定环境中从奖励功能中训练代理商,但逆增强学习(IRL)试图从观察专家的行为中恢复奖励功能。众所周知,总的来说,各种奖励功能会导致相同的最佳政策,因此,IRL定义不明。但是,(Cao等,2021)表明,如果我们观察到两个或多个具有不同折现因子或在不同环境中起作用的专家,则可以在某些条件下确定奖励功能,直至常数。这项工作首先根据等级条件显示了表格MDP的多位专家的等效可识别性声明,该声明易于验证,也被证明是必要的。然后,我们将结果扩展到各种不同的方案,即,在奖励函数可以表示为给定特征的线性组合,使其更容易解释,或者当我们可以访问近似过渡矩阵时,我们会表征奖励可识别性。即使奖励无法识别,我们也提供了特征的条件,当给定环境中的多个专家的数据允许在新环境中概括和训练最佳代理。在各种数值实验中,我们对奖励可识别性和概括性的理论结果得到了验证。
translated by 谷歌翻译
我们在Isabelle定理箴言中展示了有限马尔可夫决定流程的正式化。我们专注于动态编程和使用加固学习代理所需的基础。特别是,我们从第一个原则(在标量和向量形式中)导出Bellman方程,导出产生任何策略P的预期值的向量计算,并继续证明存在一个普遍的最佳政策的存在折扣因子不到一个。最后,我们证明了价值迭代和策略迭代算法在有限的时间内工作,分别产生ePsilon - 最佳和完全最佳的政策。
translated by 谷歌翻译
逆钢筋学习尝试在马尔可夫决策问题中重建奖励功能,使用代理操作的观察。正如Russell [1998]在Russell [1998]的那样,问题均为不良,即使在存在有关最佳行为的完美信息的情况下,奖励功能也无法识别。我们为熵正则化的问题提供了解决这种不可识别性的分辨率。对于给定的环境,我们完全表征了导致给定政策的奖励函数,并证明,在两个不同的折扣因子下或在足够的不同环境下给出了相同奖励的行动的示范,可以恢复不可观察的奖励。我们还向有限视野进行时间均匀奖励的一般性和充分条件,以及行动无关的奖励,概括Kim等人的最新结果。[2021]和Fu等人。[2018]。
translated by 谷歌翻译
我们研究了设计AI代理商的问题,该代理可以学习有效地与潜在的次优伴侣有效合作,同时无法访问联合奖励功能。这个问题被建模为合作焦论双代理马尔可夫决策过程。我们假设仅在游戏的Stackelberg制定中的两个代理中的第一个控制,其中第二代理正在作用,以便在鉴于第一代理的政策给出预期的效用。第一个代理人应该如何尽快学习联合奖励功能,因此联合政策尽可能接近最佳?在本文中,我们分析了如何在这一交互式的两个代理方案中获得对奖励函数的知识。我们展示当学习代理的策略对转换函数有显着影响时,可以有效地学习奖励功能。
translated by 谷歌翻译
This paper investigates conditions under which modi cations to the reward function of a Markov decision process preserve the optimal policy. It is shown that, besides the positive linear transformation familiar from utility theory, one can add a reward for transitions between states that is expressible as the di erence in value of an arbitrary potential function applied to those states. Furthermore, this is shown to be a necessary condition for invariance, in the sense that any other transformation may yield suboptimal policies unless further assumptions are made about the underlying MDP. These results shed light on the practice of reward shaping, a method used in reinforcement learning whereby additional training rewards are used to guide the learning agent. In particular, some well-known \bugs" in reward shaping procedures are shown to arise from non-potential-based rewards, and methods are given for constructing shaping potentials corresponding to distance-based and subgoalbased heuristics. We show that such potentials can lead to substantial reductions in learning time.
translated by 谷歌翻译
In reinforcement learning (RL), the ability to utilize prior knowledge from previously solved tasks can allow agents to quickly solve new problems. In some cases, these new problems may be approximately solved by composing the solutions of previously solved primitive tasks (task composition). Otherwise, prior knowledge can be used to adjust the reward function for a new problem, in a way that leaves the optimal policy unchanged but enables quicker learning (reward shaping). In this work, we develop a general framework for reward shaping and task composition in entropy-regularized RL. To do so, we derive an exact relation connecting the optimal soft value functions for two entropy-regularized RL problems with different reward functions and dynamics. We show how the derived relation leads to a general result for reward shaping in entropy-regularized RL. We then generalize this approach to derive an exact relation connecting optimal value functions for the composition of multiple tasks in entropy-regularized RL. We validate these theoretical contributions with experiments showing that reward shaping and task composition lead to faster learning in various settings.
translated by 谷歌翻译
我们研究奖励设计策略,用于激励加强学习代理,从一系列可接受的政策中采用政策。奖励设计师的目标是经济高效地修改底层奖励功能,同时确保在新奖励功能下的任何大约最佳的确定性政策是可允许的,并且在原始奖励功能下执行良好。这个问题可以被视为最佳奖励中毒攻击问题的双重问题:而不是强制代理商采用特定的政策,而奖励设计师则激励一个代理人以避免采取某些州不可受理的行动。也许令人惊讶的是,与最佳奖励中毒攻击的问题相比,我们首先表明可允许的政策教学的奖励设计问题是在计算上具有挑战性的,并且难以找到近似最佳的奖励修改。然后,我们通过制定最佳解决方案的代理问题,其最佳解决方案近似于我们的环境中奖励设计问题的最佳解决方案,但更适用于优化技术和分析。对于此替代问题,我们呈现了在最佳解决方案的值上提供限制的表征结果。最后,我们设计了一个本地搜索算法来解决代理问题,并使用基于模拟的实验展示其实用程序。
translated by 谷歌翻译
The reward hypothesis posits that, "all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)." We aim to fully settle this hypothesis. This will not conclude with a simple affirmation or refutation, but rather specify completely the implicit requirements on goals and purposes under which the hypothesis holds.
translated by 谷歌翻译
This paper studies systematic exploration for reinforcement learning with rich observations and function approximation. We introduce a new model called contextual decision processes, that unifies and generalizes most prior settings. Our first contribution is a complexity measure, the Bellman rank , that we show enables tractable learning of near-optimal behavior in these processes and is naturally small for many well-studied reinforcement learning settings. Our second contribution is a new reinforcement learning algorithm that engages in systematic exploration to learn contextual decision processes with low Bellman rank. Our algorithm provably learns near-optimal behavior with a number of samples that is polynomial in all relevant parameters but independent of the number of unique observations. The approach uses Bellman error minimization with optimistic exploration and provides new insights into efficient exploration for reinforcement learning with function approximation.
translated by 谷歌翻译
大部分强化学习理论都建立在计算上难以实施的甲板上。专门用于在部分可观察到的马尔可夫决策过程(POMDP)中学习近乎最佳的政策,现有算法要么需要对模型动态(例如确定性过渡)做出强有力的假设,要么假设访问甲骨文作为解决艰难的计划或估算问题的访问子例程。在这项工作中,我们在合理的假设下开发了第一个用于POMDP的无Oracle学习算法。具体而言,我们给出了一种用于在“可观察” pomdps中学习的准化性时间端到端算法,其中可观察性是一个假设,即对国家而言,分离良好的分布诱导了分离良好的分布分布而不是观察。我们的技术规定了在不确定性下使用乐观原则来促进探索的更传统的方法,而是在构建策略涵盖的情况下提供了一种新颖的barycentric跨度应用。
translated by 谷歌翻译
奖励是加强学习代理的动力。本文致力于了解奖励的表现,作为捕获我们希望代理人执行的任务的一种方式。我们在这项研究中涉及三个新的抽象概念“任务”,可能是可取的:(1)一组可接受的行为,(2)部分排序,或者(3)通过轨迹的部分排序。我们的主要结果证明,虽然奖励可以表达许多这些任务,但每个任务类型的实例都没有Markov奖励函数可以捕获。然后,我们提供一组多项式时间算法,其构造Markov奖励函数,允许代理优化这三种类型中的每种类型的任务,并正确确定何时不存在这种奖励功能。我们得出结论,具有证实和说明我们的理论发现的实证研究。
translated by 谷歌翻译
von Neumann-Morgenstern(VNM)实用程序定理表明,在某些合理性的公理下,决策将减少以最大程度地提高某些效用函数的期望。我们将这些公理扩展到日益结构化的顺序决策设置,并确定相应的实用程序函数的结构。特别是,我们表明,无内存的偏好会导致以每次过渡奖励和未来回报的乘法因素的形式产生实用性。该结果激发了马尔可夫决策过程(MDP)的概括,并在代理的申报表上使用此结构,我们称之为Affine-Reward-Reward MDP。需要对偏好的更强限制来恢复MDP中常用的标量奖励总和。尚未更强的约束简化了目标寻求代理的效用功能,以我们调用潜在功能的状态的某些函数的差异形式。我们的必要条件揭示了奖励假设,即通过在VNM理性公理中添加公理,并激发了涉及顺序决策的AI研究的新方向,从而使理性代理在增强学习中的设计构成了奖励假设。
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
强化学习算法的实用性由于相对于问题大小的规模差而受到限制,因为学习$ \ epsilon $ -optimal策略的样本复杂性为$ \ tilde {\ omega} \ left(| s | s || a || a || a || a | h^3 / \ eps^2 \ right)$在MDP的最坏情况下,带有状态空间$ S $,ACTION SPACE $ A $和HORIZON $ H $。我们考虑一类显示出低级结构的MDP,其中潜在特征未知。我们认为,价值迭代和低级别矩阵估计的自然组合导致估计误差在地平线上呈指数增长。然后,我们提供了一种新算法以及统计保证,即有效利用了对生成模型的访问,实现了$ \ tilde {o} \ left的样本复杂度(d^5(d^5(| s |+| a |)\),我们有效利用低级结构。对于等级$ d $设置的Mathrm {Poly}(h)/\ EPS^2 \ right)$,相对于$ | s |,| a | $和$ \ eps $的缩放,这是最小值的最佳。与线性和低级别MDP的文献相反,我们不需要已知的功能映射,我们的算法在计算上很简单,并且我们的结果长期存在。我们的结果提供了有关MDP对过渡内核与最佳动作值函数所需的最小低级结构假设的见解。
translated by 谷歌翻译
在这些说明中,我们将解决对我们不完全了解的马尔可夫决策过程(MDP)找到最佳策略的问题。我们的意图是从离线设置慢慢过渡到在线(学习)设置。即,我们正在走向加强学习。
translated by 谷歌翻译
一些研究人员推测智能强化学习(RL)代理商将被激励寻求资源和追求目标的权力。其他研究人员指出,RL代理商不需要具有人类的寻求技能本能。为了澄清这一讨论,我们开展了最优政策统计趋势的第一个正式理论。在马尔可夫决策过程的背景下,我们证明某些环境对称是足以实现对环境寻求权力的最佳政策。这些对称存在于许多环境中,其中代理可以关闭或销毁。我们证明,在这些环境中,大多数奖励功能使其通过保持一系列可用的选项来寻求电力,并在最大限度地提高平均奖励时,通过导航到更大的潜在终端状态。
translated by 谷歌翻译
当他们更喜欢$ \ texit {exploit} $时,您如何激励自我兴趣的代理到$ \ texit {探索} $?我们考虑复杂的探索问题,其中每个代理面临相同(但未知)MDP。与传统的加固学习配方相比,代理商控制了政策的选择,而算法只能发出建议。然而,该算法控制信息流,并且可以通过信息不对称激励代理探索。我们设计一种算法,探讨MDP中的所有可达状态。我们达到了类似于先前研究的静态,无国籍探索问题中激励探索的保证担保。据我们所知,这是第一个考虑在有状态,强化学习环境中设计的工作。
translated by 谷歌翻译