机械通气是ICU中最广泛使用的疗法中最广泛的疗法之一。然而,尽管在麻醉与科迪德相关的终身支持中具有广泛的应用,但仍有许多有害挑战。我们将这些视为控制问题:呼吸机必须根据规定的气道压力轨迹进出患者的肺部。基于PID方法的行业标准控制器既不是最佳的也不是强大的。我们的数据驱动方法学习通过在从呼吸机收集的数据上培训的模拟器本身进行培训来控制侵入式呼吸机。该方法优于流行的加固学习算法,甚至比PID更精确且强大地控制物理呼吸机。这些结果强调了有效的数据驱动方法可以用于侵入性通风,并表明更通用的通风形式(例如,无侵入性,适应性)也可能是可享受的。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
在化学厂的运行过程中,必须始终保持产品质量,并应最大程度地降低规范产品的生产。因此,必须测量与产品质量相关的过程变量,例如工厂各个部分的材料的温度和组成,并且必须根据测量结果进行适当的操作(即控制)。一些过程变量(例如温度和流速)可以连续,即时测量。但是,其他变量(例如成分和粘度)只能通过从植物中抽样物质后进行耗时的分析来获得。已经提出了软传感器,用于估算从易于测量变量实时获得的过程变量。但是,在未记录的情况下(推断),传统统计软传感器的估计精度(由记录的测量值构成)可能非常差。在这项研究中,我们通过使用动态模拟器来估算植物的内部状态变量,该模拟器可以根据化学工程知识和人工智能(AI)技术估算和预测未记录的情况,称为增强学习,并建议使用使用估计植物的内部状态变量作为软传感器。此外,我们描述了使用此类软传感器的植物操作和控制的前景以及为拟议系统获得必要的预测模型(即模拟器)的方法。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
现在,最先进的强化学习能够在模拟中学习双皮亚机器人的多功能运动,平衡和推送能力。然而,现实差距大多被忽略了,模拟结果几乎不会转移到真实硬件上。在实践中,它是不成功的,因为物理学过度简化,硬件限制被忽略,或者不能保证规律性,并且可能会发生意外的危险运动。本文提出了一个强化学习框架,该框架能够学习以平稳的开箱即用向现实的转移,仅需要瞬时的本体感受观察,可以学习强大的站立式恢复。通过结合原始的终止条件和政策平滑度调节,我们使用没有记忆力或观察历史的政策实现了稳定的学习,SIM转移和安全性。然后使用奖励成型来提供有关如何保持平衡的见解。我们展示了其在下LIMB医学外骨骼Atalante中的现实表现。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
近年来,自动微动性吸引了研究人员和从业者的注意。许多微型传输车辆的关键组成部分是DC电动机,DC电动机是连续且非线性的复杂动力系统。对于需要稳健性和稳定性的各种应用,需要在存在干扰和不确定性的情况下快速控制直流电动机。完成此任务的技术通常依赖于数学系统模型,该模型通常不足以预测非线性的时变和相互关联来源的影响。尽管某些无模型方法在任务方面取得了成功,但它们依赖于与系统的大规模交互,并接受了专门的硬件培训,以适合高度参数化的控制器。在这项工作中,我们学会通过样品有效的增强学习来引导直流电动机。使用现实世界中硬件交互收集的数据,我们还构建了一个模拟器,以实验各种参数和学习策略。找到最佳参数,我们在模拟的一分钟和53秒内学习了有效的控制策略,并在10分钟35秒内在物理系统上学习了一个有效的控制策略。
translated by 谷歌翻译
Sampling-based Model Predictive Control (MPC) is a flexible control framework that can reason about non-smooth dynamics and cost functions. Recently, significant work has focused on the use of machine learning to improve the performance of MPC, often through learning or fine-tuning the dynamics or cost function. In contrast, we focus on learning to optimize more effectively. In other words, to improve the update rule within MPC. We show that this can be particularly useful in sampling-based MPC, where we often wish to minimize the number of samples for computational reasons. Unfortunately, the cost of computational efficiency is a reduction in performance; fewer samples results in noisier updates. We show that we can contend with this noise by learning how to update the control distribution more effectively and make better use of the few samples that we have. Our learned controllers are trained via imitation learning to mimic an expert which has access to substantially more samples. We test the efficacy of our approach on multiple simulated robotics tasks in sample-constrained regimes and demonstrate that our approach can outperform a MPC controller with the same number of samples.
translated by 谷歌翻译
深度学习的兴起导致机器人研究中的范式转变,有利于需要大量数据的方法。在物理平台上生成这样的数据集是昂贵的。因此,最先进的方法在模拟中学习,其中数据生成快速以及廉价并随后将知识转移到真实机器人(SIM-to-Real)。尽管变得越来越真实,但所有模拟器都是基于模型的施工,因此不可避免地不完善。这提出了如何修改模拟器以促进学习机器人控制政策的问题,并克服模拟与现实之间的不匹配,通常称为“现实差距”。我们对机器人学的SIM-Teal研究提供了全面的审查,专注于名为“域随机化”的技术,这是一种从随机仿真学习的方法。
translated by 谷歌翻译
A key barrier to using reinforcement learning (RL) in many real-world applications is the requirement of a large number of system interactions to learn a good control policy. Off-policy and Offline RL methods have been proposed to reduce the number of interactions with the physical environment by learning control policies from historical data. However, their performances suffer from the lack of exploration and the distributional shifts in trajectories once controllers are updated. Moreover, most RL methods require that all states are directly observed, which is difficult to be attained in many settings. To overcome these challenges, we propose a trajectory generation algorithm, which adaptively generates new trajectories as if the system is being operated and explored under the updated control policies. Motivated by the fundamental lemma for linear systems, assuming sufficient excitation, we generate trajectories from linear combinations of historical trajectories. For linear feedback control, we prove that the algorithm generates trajectories with the exact distribution as if they are sampled from the real system using the updated control policy. In particular, the algorithm extends to systems where the states are not directly observed. Experiments show that the proposed method significantly reduces the number of sampled data needed for RL algorithms.
translated by 谷歌翻译
由于非线性动力学,执行器约束和耦合的纵向和横向运动,部分地,固定翼无人驾驶飞行器(无人机)的姿态控制是一个困难的控制问题。目前的最先进的自动驾驶仪基于线性控制,因此有限于其有效性和性能。深度加强学习(DRL)是一种通过与受控系统的交互自动发现最佳控制法的机器学习方法,可以处理复杂的非线性动态。我们在本文中展示DRL可以成功学习直接在原始非线性动态上运行的固定翼UAV的态度控制,需要短至三分钟的飞行数据。我们最初在仿真环境中培训我们的模型,然后在飞行测试中部署无人机的学习控制器,向最先进的ArduplaneProportional-Integry-artivation(PID)姿态控制器的表现展示了可比的性能,而无需进一步的在线学习。为了更好地理解学习控制器的操作,我们呈现了对其行为的分析,包括与现有良好调整的PID控制器的比较。
translated by 谷歌翻译
在训练数据的分布中评估时,学到的模型和政策可以有效地概括,但可以在分布输入输入的情况下产生不可预测且错误的输出。为了避免在部署基于学习的控制算法时分配变化,我们寻求一种机制将代理商限制为类似于受过训练的国家和行动的机制。在控制理论中,Lyapunov稳定性和控制不变的集合使我们能够保证稳定系统周围系统的控制器,而在机器学习中,密度模型使我们能够估算培训数据分布。我们可以将这两个概念结合起来,产生基于学习的控制算法,这些算法仅使用分配动作将系统限制为分布状态?在这项工作中,我们建议通过结合Lyapunov稳定性和密度估计的概念来做到这一点,引入Lyapunov密度模型:控制Lyapunov函数和密度模型的概括,这些函数和密度模型可以保证代理商在其整个轨迹上保持分布的能力。
translated by 谷歌翻译
为了确保用户接受自动驾驶汽车(AVS),正在开发控制系统以模仿人类驾驶员的驾驶行为。模仿学习(IL)算法达到了这个目的,但努力为由此产生的闭环系统轨迹提供安全保证。另一方面,模型预测控制(MPC)可以处理具有安全限制的非线性系统,但是用它来实现类似人类的驾驶需要广泛的域知识。这项工作表明,通过将MPC用作分层IL策略中的可区分控制层,将两种技术的无缝组合从所需驾驶行为的演示中学习安全的AV控制器。通过此策略,IL通过MPC成本,模型或约束的参数在闭环和端到端进行。鉴于人类在固定基准驾驶模拟器上进行了示范,分析了通过行为克隆(BCO)来学习的该方法的实验结果,用于通过行为克隆(BCO)学习的车道控制系统的设计。
translated by 谷歌翻译
策略搜索和模型预测控制〜(MPC)是机器人控制的两个不同范式:策略搜索具有使用经验丰富的数据自动学习复杂策略的强度,而MPC可以使用模型和轨迹优化提供最佳控制性能。开放的研究问题是如何利用并结合两种方法的优势。在这项工作中,我们通过使用策略搜索自动选择MPC的高级决策变量提供答案,这导致了一种新的策略搜索 - 用于模型预测控制框架。具体地,我们将MPC作为参数化控制器配制,其中难以优化的决策变量表示为高级策略。这种制定允许以自我监督的方式优化政策。我们通过专注于敏捷无人机飞行中的具有挑战性的问题来验证这一框架:通过快速的盖茨飞行四轮车。实验表明,我们的控制器在模拟和现实世界中实现了鲁棒和实时的控制性能。拟议的框架提供了合并学习和控制的新视角。
translated by 谷歌翻译
我们提出了一个混合工业冷却系统模型,该模型将分析解决方案嵌入多物理模拟中。该模型设计用于增强学习(RL)应用程序,并平衡简单性与模拟保真度和解释性。该模型的忠诚度根据大规模冷却系统的现实世界数据进行了评估。接下来是一个案例研究,说明如何将模型用于RL研究。为此,我们开发了一个工业任务套件,该套件允许指定不同的问题设置和复杂性水平,并使用它来评估不同RL算法的性能。
translated by 谷歌翻译
本文提出了一种校准控制参数的方法。这种控制参数的示例是PID控制器的增益,优化控制的成本函数的权重,过滤器系数,滑动模式控制器的滑动表面,或神经网络的权重。因此,所提出的方法可以应用于各种控制器。该方法使用闭环系统操作数据来估计控制参数而不是系统状态的卡尔曼滤波器。控制参数校准由训练目标驱动,其包括对动态系统性能的规范。校准方法在线和强大地调整参数,是计算效率,具有低数据存储要求,并且易于实现对许多实时应用的吸引力。仿真结果表明,该方法能够快速学习控制参数(闭环成本的平均衰减因子大约24%),能够调整参数来补偿干扰(跟踪精度的提高约29%),并且是坚固的噪音。此外,具有高保真车辆模拟器Carim的仿真研究表明,该方法可以在线校准复杂动态系统的控制器,这表明其对现实世界的适用性。
translated by 谷歌翻译
Drug dosing is an important application of AI, which can be formulated as a Reinforcement Learning (RL) problem. In this paper, we identify two major challenges of using RL for drug dosing: delayed and prolonged effects of administering medications, which break the Markov assumption of the RL framework. We focus on prolongedness and define PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process), a subclass of POMDPs in which the Markov assumption does not hold specifically due to prolonged effects of actions. Motivated by the pharmacology literature, we propose a simple and effective approach to converting drug dosing PAE-POMDPs into MDPs, enabling the use of the existing RL algorithms to solve such problems. We validate the proposed approach on a toy task, and a challenging glucose control task, for which we devise a clinically-inspired reward function. Our results demonstrate that: (1) the proposed method to restore the Markov assumption leads to significant improvements over a vanilla baseline; (2) the approach is competitive with recurrent policies which may inherently capture the prolonged effect of actions; (3) it is remarkably more time and memory efficient than the recurrent baseline and hence more suitable for real-time dosing control systems; and (4) it exhibits favorable qualitative behavior in our policy analysis.
translated by 谷歌翻译
We introduce MuJoCo MPC (MJPC), an open-source, interactive application and software framework for real-time predictive control, based on MuJoCo physics. MJPC allows the user to easily author and solve complex robotics tasks, and currently supports three shooting-based planners: derivative-based iLQG and Gradient Descent, and a simple derivative-free method we call Predictive Sampling. Predictive Sampling was designed as an elementary baseline, mostly for its pedagogical value, but turned out to be surprisingly competitive with the more established algorithms. This work does not present algorithmic advances, and instead, prioritises performant algorithms, simple code, and accessibility of model-based methods via intuitive and interactive software. MJPC is available at: github.com/deepmind/mujoco_mpc, a video summary can be viewed at: dpmd.ai/mjpc.
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译