本文提出了一种校准控制参数的方法。这种控制参数的示例是PID控制器的增益,优化控制的成本函数的权重,过滤器系数,滑动模式控制器的滑动表面,或神经网络的权重。因此,所提出的方法可以应用于各种控制器。该方法使用闭环系统操作数据来估计控制参数而不是系统状态的卡尔曼滤波器。控制参数校准由训练目标驱动,其包括对动态系统性能的规范。校准方法在线和强大地调整参数,是计算效率,具有低数据存储要求,并且易于实现对许多实时应用的吸引力。仿真结果表明,该方法能够快速学习控制参数(闭环成本的平均衰减因子大约24%),能够调整参数来补偿干扰(跟踪精度的提高约29%),并且是坚固的噪音。此外,具有高保真车辆模拟器Carim的仿真研究表明,该方法可以在线校准复杂动态系统的控制器,这表明其对现实世界的适用性。
translated by 谷歌翻译
神经网络已越来越多地用于模型预测控制器(MPC)来控制非线性动态系统。但是,MPC仍然提出一个问题,即可实现的更新率不足以应对模型不确定性和外部干扰。在本文中,我们提出了一种新颖的控制方案,该方案可以使用MPC的神经网络动力学设计最佳的跟踪控制器,从而使任何现有基于模型的Feedforward Controller的插件扩展程序都可以应用于插件。我们还描述了我们的方法如何处理包含历史信息的神经网络,该信息不遵循一般的动态形式。该方法通过其在外部干扰的经典控制基准中的性能进行评估。我们还扩展了控制框架,以应用于具有未知摩擦的积极自主驾驶任务。在所有实验中,我们的方法的表现都优于比较的方法。我们的控制器还显示出低控制的水平,表明我们的反馈控制器不会干扰MPC的最佳命令。
translated by 谷歌翻译
本文介绍了一种用于自主车辆的耦合,神经网络辅助纵向巡航和横向路径跟踪控制器,具有模型不确定性和经历未知的外部干扰。使用反馈误差学习机制,采用利用自适应径向基函数(RBF)神经网络的反向车辆动态学习方案,称为扩展的最小资源分配网络(EMRAN)。 EMRAN使用扩展的卡尔曼滤波器进行在线学习和体重更新,并采用了一种越来越多的/修剪策略,用于维护紧凑的网络,以便更容易地实现。在线学习算法处理参数化不确定性,并消除了未知干扰在道路上的影响。结合用于提高泛化性能的自我调节学习方案,所提出的EMRAN辅助控制架构辅助基本PID巡航和斯坦利路径跟踪控制器以耦合的形式。与传统的PID和斯坦利控制器相比,其对各种干扰和不确定性的性能和鲁棒性以及与基于模糊的PID控制器和主动扰动抑制控制(ADRC)方案的比较。慢速和高速场景介绍了仿真结果。根均线(RMS)和最大跟踪误差清楚地表明提出的控制方案在未知环境下实现自动车辆中更好的跟踪性能的有效性。
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译
已经使用基于物理学的模型对非全面车辆运动进行了广泛的研究。使用这些模型时,使用线性轮胎模型来解释车轮/接地相互作用时的通用方法,因此可能无法完全捕获各种环境下的非线性和复杂动力学。另一方面,神经网络模型已在该域中广泛使用,证明了功能强大的近似功能。但是,这些黑盒学习策略完全放弃了现有的知名物理知识。在本文中,我们无缝将深度学习与完全不同的物理模型相结合,以赋予神经网络具有可用的先验知识。所提出的模型比大边距的香草神经网络模型显示出更好的概括性能。我们还表明,我们的模型的潜在特征可以准确地表示侧向轮胎力,而无需进行任何其他训练。最后,我们使用从潜在特征得出的本体感受信息开发了一种风险感知的模型预测控制器。我们在未知摩擦下的两个自动驾驶任务中验证了我们的想法,表现优于基线控制框架。
translated by 谷歌翻译
现代机器人系统具有卓越的移动性和机械技能,使其适合在现实世界场景中使用,其中需要与重物和精确的操纵能力进行互动。例如,具有高有效载荷容量的腿机器人可用于灾害场景,以清除危险物质或携带受伤的人。因此,可以开发能够使复杂机器人能够准确地执行运动和操作任务的规划算法。此外,需要在线适应机制,需要新的未知环境。在这项工作中,我们强加了模型预测控制(MPC)产生的最佳状态输入轨迹满足机器人系统自适应控制中的Lyapunov函数标准。因此,我们将控制Lyapunov函数(CLF)提供的稳定性保证以及MPC在统一的自适应框架中提供的最优性,在机器人与未知对象的交互过程中产生改进的性能。我们验证了携带未建模有效载荷和拉重盒子的四足机器人的仿真和硬件测试中提出的方法。
translated by 谷歌翻译
模型预测控制(MPC)表明了控制诸如腿机器人等复杂系统的巨大成功。然而,在关闭循环时,在每个控制周期解决的有限范围最佳控制问题(OCP)的性能和可行性不再保证。这是由于模型差异,低级控制器,不确定性和传感器噪声的影响。为了解决这些问题,我们提出了一种修改版本,该版本的标准MPC方法用于带有活力的腿运动(弱向不变性)保证。在这种方法中,代替向问题添加(保守)终端约束,我们建议使用投影到在每个控制周期的OCP中的可行性内核中投影的测量状态。此外,我们使用过去的实验数据来找到最佳成本重量,该重量测量性能,约束满足鲁棒性或稳定性(不变性)的组合。这些可解释的成本衡量了稳健性和性能之间的贸易。为此目的,我们使用贝叶斯优化(BO)系统地设计实验,有助于有效地收集数据以了解导致强大性能的成本函数。我们的模拟结果具有不同的现实干扰(即外部推动,未铭出的执行器动态和计算延迟)表明了我们为人形机器人创造了强大的控制器的方法的有效性。
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
为设计控制器选择适当的参数集对于最终性能至关重要,但通常需要一个乏味而仔细的调整过程,这意味着强烈需要自动调整方法。但是,在现有方法中,无衍生物的可扩展性或效率低下,而基于梯度的方法可能由于可能是非差异的控制器结构而无法使用。为了解决问题,我们使用新颖的无衍生化强化学习(RL)框架来解决控制器调整问题,该框架在经验收集过程中在参数空间中执行时间段的扰动,并将无衍生策略更新集成到高级参与者 - 批判性RL中实现高多功能性和效率的体系结构。为了证明该框架的功效,我们在自动驾驶的两个具体示例上进行数值实验,即使用PID控制器和MPC控制器进行轨迹跟踪的自适应巡航控制。实验结果表明,所提出的方法的表现优于流行的基线,并突出了其强大的控制器调整潜力。
translated by 谷歌翻译
机器人控制器的性能取决于其参数的选择,这需要仔细调整。在本文中,我们提出了DiFftune,这是一个新型,基于梯度的自动调整框架。我们的方法将动态系统和控制器作为计算图展开,并通过基于梯度的优化更新控制器参数。与常用的后传播方案不同,Difftune中的梯度是通过灵敏度传播获得的,这是一种与系统演化平行的前向模式自动分化技术。我们验证了杜宾汽车上提出的自动调节方法和在挑战性模拟环境中的四型旋转。仿真实验表明,该方法对于系统动力学和环境中的不确定性是可靠的,并且可以很好地推广到调整中看不见的轨迹。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
Accurate path following is challenging for autonomous robots operating in uncertain environments. Adaptive and predictive control strategies are crucial for a nonlinear robotic system to achieve high-performance path following control. In this paper, we propose a novel learning-based predictive control scheme that couples a high-level model predictive path following controller (MPFC) with a low-level learning-based feedback linearization controller (LB-FBLC) for nonlinear systems under uncertain disturbances. The low-level LB-FBLC utilizes Gaussian Processes to learn the uncertain environmental disturbances online and tracks the reference state accurately with a probabilistic stability guarantee. Meanwhile, the high-level MPFC exploits the linearized system model augmented with a virtual linear path dynamics model to optimize the evolution of path reference targets, and provides the reference states and controls for the low-level LB-FBLC. Simulation results illustrate the effectiveness of the proposed control strategy on a quadrotor path following task under unknown wind disturbances.
translated by 谷歌翻译
由于这些要求的竞争性质,尤其是在一系列的运行速度和条件下,在转向控制中的准确性和误差融合与优美运动的平衡路径与优美的运动具有挑战性。本文表明,考虑滑移对运动学控制,动态控制和转向执行器速率命令的影响的集成多层转向控制器可实现准确且优美的路径。这项工作建立在多层侧滑和基于YAW的模型上,该模型允许派生控制器考虑由于侧滑而引起的误差以及转向命令和优美的侧向运动之间的映射。基于观察者的侧滑估计与运动控制器中的标题误差相结合,以提供前馈滑移补偿。使用基于速度的路径歧管,通过连续变量结构控制器(VSC)来补偿路径以下误差,以平衡优雅的运动和误差收敛。后台动态控制器使用结果偏航率命令来生成转向率命令。高增益观察者(HGO)估计输出反馈控制的侧滑和偏航率。提供了输出反馈控制器的稳定性分析,并解决了峰值。该工作仅针对侧向控制,因此转向控制器可以与其他速度控制器结合使用。现场结果提供了与相关方法的比较,这些方法在不同的复杂情况下证明了具有不同天气条件和扰动的不同复杂情况。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
二次运动的准确轨迹跟踪控制对于在混乱环境中的安全导航至关重要。但是,由于非线性动态,复杂的空气动力学效应和驱动约束,这在敏捷飞行中具有挑战性。在本文中,我们通过经验比较两个最先进的控制框架:非线性模型预测控制器(NMPC)和基于差异的控制器(DFBC),通过以速度跟踪各种敏捷轨迹,最多20 m/s(即72 km/h)。比较在模拟和现实世界环境中进行,以系统地评估这两种方法从跟踪准确性,鲁棒性和计算效率的方面。我们以更高的计算时间和数值收敛问题的风险来表明NMPC在跟踪动态不可行的轨迹方面的优势。对于这两种方法,我们还定量研究了使用增量非线性动态反演(INDI)方法添加内环控制器的效果,以及添加空气动力学阻力模型的效果。我们在世界上最大的运动捕获系统之一中进行的真实实验表明,NMPC和DFBC的跟踪误差降低了78%以上,这表明有必要使用内环控制器和用于敏捷轨迹轨迹跟踪的空气动力学阻力模型。
translated by 谷歌翻译
这里,我们提出了一种新方法,在没有任何额外的平滑算法的模型预测路径积分控制(MPPI)任务中产生平滑控制序列。我们的方法有效地减轻了抽样中的喋喋不休,而MPPI的信息定位仍然是相同的。我们展示了具有不同算法的定量评估的挑战性自主驾驶任务中的提出方法。还提出了一种用于估算不同道路摩擦条件下的系统动态的神经网络车辆模型。我们的视频可以找到:\ url {https://youtu.be/o3nmi0ujfqg}。
translated by 谷歌翻译
基于二次程序(QP)基于状态反馈控制器,其不等式约束以控制障碍(CBFS)和Lyapunov函数的限制使用类-U \ Mathcal {K k} $函数其值的值,对其值的函数,对其值的参数敏感这些类 - $ \ MATHCAL {K} $ functions。但是,有效CBF的构建并不直接,对于QP的任意选择参数,系统轨迹可能会进入QP最终变得不可行的状态,或者可能无法实现所需的性能。在这项工作中,我们将控制合成问题作为差异策略提出,其参数在高级别的时间范围内被优化,从而导致双层优化常规。在不了解一组可行参数的情况下,我们开发了一种递归可行性引导的梯度下降方法来更新QP的参数,以便新解决方案至少和以前的解决方案的性能至少执行。通过将动力学系统视为有向图,随着时间的推移,这项工作提出了一种新颖的方式,可以通过(1)使用其解决方案的梯度来优化QP控制器在一个时间范围内对多个CBF的性能进行敏感性,从而提出了一种新的方式。分析,以及(2)将这些和系统动力学梯度进行反向传播,以更新参数,同时保持QPS的可行性。
translated by 谷歌翻译
在机电一体化的IEEE / ASME交易上发布,DOI:10.1109 / TMECH.2021.3100150。理想情况下,需要精确的传感器测量来实现机电系统的闭环控制中的良好性能。因此,传感器故障将阻止系统正常工作,除非采用容错控制(FTC)架构。作为非线性系统的基于模型的FTC算法通常是具有挑战性的设计,本文基于深度学习的传感器故障存在于FTC的新方法。所考虑的方法用单个反复性神经网络替换故障检测和隔离和控制器设计的阶段,其在给定的时间窗口中具有过去的传感器测量值作为输入,以及控制变量的当前值作为输出。该端到端的深FTC方法应用于由球形倒立摆的机电调整系统,其构造通过反应轮改变,又通过电动机致动。模拟和实验结果表明,该方法可以处理连杆位置/速度传感器中发生的突然故障。提供的补充材料包括现实世界实验和软件源代码的视频。
translated by 谷歌翻译